A certain \textit{N}-Generalized Principally Quasi-Baer Subring of the Matrix rings

H. Haj Seyyed Javadi Amirkabir University
A. Moussavi, E. Hashemi: University of Tarbiat Modarres

Abstract

For a fixed positive integer \(n\), we say a ring with identity is \textit{n-generalized right principally quasi-Baer}, if for any principal right ideal \(I\) of \(R\), the right annihilator of \(I^n\) is generated by an idempotent. This class of rings includes the right principally quasi-Baer rings and hence all prime rings. A certain \(n\)-generalized principally quasi-Baer subring of the matrix ring \(M_n(R)\) are studied, and connections to related classes of rings (e.g., p.q.-Baer rings and \(n\)-generalized p.p. rings) are considered\(^1\).

1. Introduction and Preliminaries

Throughout all rings are assumed to be associative with identity. From [12, 21], a ring \(R\) is (quasi-)Baer if the right annihilator of any (right ideal) nonempty subset of \(R\) is generated, as a right ideal, by an idempotent. Moreover, in [12] Clark proved the left-right symmetry of this condition. He uses this condition to characterize when a finite dimensional algebra with unity over an algebraically closed filed is isomorphic to a twisted matrix units semigroup algebra. The class of quasi-Baer rings is a nontrivial generalization of the class of Baer rings. Every prime ring is quasi-Baer, hence prime rings with nonzero right singular ideal are quasi-Baer; but not Baer [24]. For a positive integer \(n > 1\), the \(n \times n\) matrix ring over a non-Prüfer commutative domain is a prime quasi-Baer ring which is not a Baer ring by [27] and [21, p.17]. The \(n \times n\) (\(n > 1\)) upper triangular matrix ring over a domain which is not a division ring is quasi-Baer but not

\(^1\) 2000 Mathematical Subject Classification. 16D15; 16D40; 16D70.

\textbf{Keywords and phrases.} n-Generalized p.q.-Baer ring; p.p.-ring; Annihilators; triangular matrix ring
Baer by an example due to Cohn; see [1], [20] and [5]. The theory of Baer and quasi-Baer rings has come to play an important role and major contributions have been made in recent years by a number of authors, including Birkenmeier, Chatters, Khuri, Kim, Hirano and Park (see, for example [1], [4-7], [16], [21], [26] and [28]).

A ring satisfying a generalization of Rickart’s condition [30] (i.e., right annihilator of any element is generated (as a right ideal) by an idempotent) has a homological characterization as a right p.p.-ring. A ring R is called a right (resp. left) p.p.-ring if every principal right (resp. left) ideal is projective. R is called a p.p.-ring (also called a Rickart ring [2, p.18]), if it is both right and left p.p.-ring. In [9] Chase shows the concept of p.p.-ring is not left-right symmetric. Small [30] shows that a right p.p.-ring R is Baer (so p.p), when R is orthogonally finite. Also it is shown by Endo [13] that a right p.p.-ring R is p.p when R is abelian (i.e., every idempotent is central). Finally Chatters and Xue [11] prove that in a duo (i.e., every one sided ideal is two sided) p.p.-ring R, if I is a finitely generated right projective ideal of R, then I is left projective and a direct summand of an invertible ideal. Following Birkenmeier et al. [7], R is called right principally quasi-Baer (or simply right p.q.-Baer), if the right annihilator of a principal right ideal is generated by an idempotent. Equivalently, R is right p.q.-Baer if R modulo the right annihilator of any principal right ideal is projective. Similarly, left p.q.-Baer rings can be defined. If R is both right and left p.q.-Baer, then it is called p.q.-Baer. The class of p.q.-Baer rings includes all biregular rings, all quasi-Baer rings, and all abelian p.p.-rings. A ring R is said to be p–regular, if for every $x \in R$ there exists a natural number n, depending on x, such that $x^n \in x^0Rx^0$. A ring R is called a generalized right p.p.-ring if for any $x \in R$ the right ideal x^0R is projective for some positive integer n, depending on x, or equivalently, if for any $x \in R$ the right annihilator of x^0 is generated by an idempotent for some positive integer n, depending on x. A ring is called generalized p.p.-ring, if it is both generalized right and left p.p.-ring.

Note that Von Neumann regular rings are right (left) p.p.-rings by Goodearl [14,
Theorem 1.1], and a same argument as [14, Theorem 1.1] shows that p - regular rings are generalized p.p.-rings. Right p.p.-rings are generalized right p.p obviously. See [18] for more details.

Definition 1.1. Given a fixed positive integer \(n \), we say a ring \(R \) is \(n \)-generalized right principally quasi Baer (or \(n \)-generalized right p.q.-Baer), if for all principal right ideal \(I \) of \(R \), the right annihilator of \(I^n \) is generated by an idempotent. Left cases may be defined analogously.

The class of \(n \)-generalized right p.q.-Baer rings includes all right p.q.-Baer rings, (and hence all biregular rings, quasi-Baer rings, abelian p.p.-rings and semicommutative (i.e., if \(r(x) \) is an ideal for all \(x \in R \)) generalized p.p rings). Theorem 2.1 in section 2, allows us to construct examples of \(n \)-generalized p.q.-Baer rings that are not p.q.-Baer. Some conditions on the equivalence of \(n \)-generalized p.q.-Baer and \(n \)-generalized p.p.-rings are discussed. However, we show by examples that the class of \(n \)-generalized p.q.-Baer rings properly extends the aforementioned classes.

In this paper, we discuss some type of matrix rings formed over p.q.-Baer or p.p. rings. We study \(n \)-generalized p.q.-Baer subrings of the matrix ring \(M_n(R) \). Theorem 2.2, enables us to generate examples of \(n \)-generalized p.q.-Baer subrings of the matrix ring \(M_n(R) \). Theorem 2.2, which extends [18, Proposition 6], enables us to provide more examples of matrix rings, that are both \(n \)-generalized p.q.-Baer and \(n \)-generalized p.p.-ring. Connections to related classes of rings are investigated. Although the class of \(n \)-generalized p.q.-Baer rings, includes all p.q.-Baer rings (and hence, all biregular rings, and all abelian p.p. rings), however we show by examples that the class of \(n \)-generalized p.q.-Baer rings properly extends the aforementioned classes.

Note that, for a reduced ring (which has no nonzero nilpotent elements), we have \(l_R(Rx) = l_R((Rx)^n) = l_R(x^n) = l_R(x) = r_R(x) = r_R((xR)^n) = r_R(xR) \), for every \(x \in R \) and every positive integer \(n \). Therefore reduced rings are semicommutative and semicommutative rings are abelian. Also for reduced rings the definitions of right p.q.-
Baer, n-generalized right p.q.-Baer, generalized p.p. and p.p.-ring are coincide. This leads one ask whether commutative reduced rings are n-generalized p.q.-Baer. However, the answer is negative by the following.

Example 1.2. Let p be a prime number and $R = \{(a, b) \in \mathbb{Z} \oplus \mathbb{Z} \mid a \equiv b \pmod{p}\}$, then R is a commutative reduced ring. Note that the only idempotents of R are $(0, 0)$ and $(1, 1)$. One can show that $r_R((p, 0)R) = (0, p)R$, so $r_R((p, 0)R)$ does not contain a nonzero idempotent of R; and hence R is not n-generalized right quasi-Baer, for any positive integer n.

Lemma 1.3. Let R be an abelian n-generalized right p.q.-Baer ring, then $r_R(l^n) = r_R(l^m)$ for every principal right ideal I of R and each positive integer m with $n \leq m$.

Proof. It is enough to show that $r_R(l^n) = r_R(l^{n+1})$. Let $x \in r_R(l^{n+1})$, then $l^nx \subseteq r_R(l^n) = fR$ for some idempotent $f \in R$. Hence $l^nx = l^nf = 0$. Thus $x \in r_R(l^n)$.

2. n-generalized right principally quasi Baer subrings of the matrix rings

In this section we discuss some type of matrix rings formed over p.q.-Baer or p.p.-rings. Theorem 2.3, which extends [18, Proposition 6], enables us to provide more examples of matrix rings that are both n-generalized p.q.-Baer and n-generalized p.p.-ring. We begin with Theorem 2.2 below, which enables us to generate examples of n-generalized p.q.-Baer subrings of the matrix ring $M_n(R)$:

Lemma 2.1 [18, Lemma 2]. Let R be an abelian ring and define

$$S_n := \begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} : a, a_{ij} \in R,$$

with n a positive integer ≥ 2. Then every idempotent in S_n is of the form

$$\begin{pmatrix} f & 0 & \cdots & 0 \\ 0 & f & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f \end{pmatrix}$$

with $f^2 = f \in R$.
We will use S_n. Throughout the remainder of the paper, to denote the ring indicated in Lemma 2.1.

Theorem 2.2. If R is an abelian p.q. -Baer ring and $n \geq 2$ is a positive integer, then S_n is an n-generalized right p.q.-Baer ring.

Proof. We proceed by induction on n. It is easy to show that $2S$ is a 2-generalized right p.q.-Baer ring. Let nI be a principal right ideal of nS. Consider $\begin{bmatrix} nI & - & - \\ nI & - & - \\ \vdots & \vdots & \vdots \\ nI & - & - \end{bmatrix}$, and $\begin{bmatrix} nI & - & - \\ nI & - & - \\ \vdots & \vdots & \vdots \\ nI & - & - \end{bmatrix}$. It is clear that nI and nI are principal right ideals of nS. By induction hypothesis and Lemma 2.1, there are $\begin{bmatrix} \alpha_1 \alpha_2 \cdots \alpha_n \\ 0 \alpha_1 \alpha_2 \cdots \alpha_n \\ \vdots \vdots \vdots \\ 0 \alpha_1 \alpha_2 \cdots \alpha_n \end{bmatrix}$ for $i = 0, 1, 2, \ldots, n$ such that $\begin{bmatrix} nS & - & - \\ nS & - & - \\ \vdots & \vdots & \vdots \\ nS & - & - \end{bmatrix} = 0$, $\begin{bmatrix} nS & - & - \\ nS & - & - \\ \vdots & \vdots & \vdots \\ nS & - & - \end{bmatrix} = 0$. Let J be the set of entries of the main diagonal of the elements of $\begin{bmatrix} nS & - & - \\ nS & - & - \\ \vdots & \vdots & \vdots \\ nS & - & - \end{bmatrix}$ or $\begin{bmatrix} nS & - & - \\ nS & - & - \\ \vdots & \vdots & \vdots \\ nS & - & - \end{bmatrix}$. It is clear that J is a principal right ideal of R. Since R is right p.q.-Baer, $rR = fR = fR$. Hence $f_1 = f_2$, since R is an abelian ring. Now let

$$X = \begin{bmatrix} x & x_{12} & \cdots & x_{1n} \\ 0 & x & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x \end{bmatrix} \in S_n(\mathbb{R}^n)$$

and $Y = \begin{bmatrix} \alpha_1 \alpha_2 \cdots \alpha_n & y_{12} & \cdots & y_{1n} \\ 0 & \alpha_1 \alpha_2 \cdots \alpha_n & \cdots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \alpha_1 \alpha_2 \cdots \alpha_n \end{bmatrix} \in S_n(\mathbb{R}^n)$

Since $rS(l_{n-1}^{0}) = rS(l_{n-1}^{0}) = eS_{n-1}$, x and x_{ij}’s are in fR for each i and j except x_{1n}. So we have $a \alpha_2 \cdots a_n x_{1n} + y_{1n} x = 0$. Hence $y_{1n} x = 0$, since $f_1 \in B(R)$. Thus $x_{1n} \in fR$ and hence $rS(l_{n}^{0}) \subseteq eS_n$ for $e = \begin{bmatrix} f_1 & 0 & \cdots & 0 \\ 0 & f_1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f_1 \end{bmatrix} \in S_n$.

Since, for each $Y \in S_n e$, all entries of the main diagonal of Y are zero and e is central, $l_n e = (l_n e)^n = 0$. Thus $rS(l_{n}^{0}) = eS_n$. Therefore S_n is n-generalized right p.q.-Baer.

The following result, which generalizes [18, Proposition 6], provides examples of
matrix rings that are both \(n \)-generalized p.q.-Baer and \(n \)-generalized p.p.-ring:

Theorem 2.3. If \(R \) is an abelian p.p.-ring, then \(S_n \) is an abelian \(n \)-generalized p.p.-ring.

Proof. We prove by induction on \(n \). First, we show that the trivial extension \(S_2 \) of \(R \) is 2-generalized right p.p. Let \(A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \in S_2 \) and \(r_k(a) = eR \), with \(e^2 = e \in R \). It is clear that, \(eR \subseteq S_2(A^2) \) with \(f = \begin{pmatrix} e & 0 \\ 0 & e \end{pmatrix} \). Next, let \(A^2 \begin{pmatrix} x & y \\ 0 & x \end{pmatrix} = 0 \). Since \(R \) is reduced, \(a^2 x = ax = 0 \) and \(a^2 y = ay = 0 \). Hence \(ex = x \) and \(ey = y \). Thus \(\begin{pmatrix} x & y \\ 0 & x \end{pmatrix} \). Therefore \(S_2 \) is 2-generalized right p.p. Now assume \(B = \begin{pmatrix} a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} \in S_n \).

Consider \(B_1 = \begin{pmatrix} a & a_{12} & \cdots & a_{1n-1} \\ 0 & a & \cdots & a_{2n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} \) and \(B_2 = \begin{pmatrix} a_{23} & \cdots & a_{2n} \\ 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} \) in \(S_{n-1} \), then by the induction hypothesis, there exists \(e^2 = e_i \in S_{n-1} \), \(f_i = f_i \in R \), such that \(r_{n-1}(B_i^{n-1}) = e_i S_{n-1} \), \(e_i = \begin{pmatrix} f_i & 0 & \cdots & 0 \\ 0 & f_i & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f_i \end{pmatrix} \) for \(i = 1, 2 \). By direct calculations, we have \(r_n(B^{2n-2}) = eS_n \) with \(e = \begin{pmatrix} f & 0 & \cdots & 0 \\ 0 & f & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f \end{pmatrix} \). Since \(r_1(a) = eR \), by [27, Lemma 3], \(r_n(B^n) = r_n(B^{2n-2}) = eS_n \).

Corollary 2.4 [18, Proposition 6]. If \(R \) is a domain, then \(S_n \) is an abelian \(n \)-generalized p.p.-ring.

For a semicommutative ring, the definitions of \(n \)-generalized right p.q.-Baer and \(n \)-generalized right p.p. are coincide:

Proposition 2.5. Let \(R \) be a semicommutative ring. Then \(R \) is \(n \)-generalized right p.q.-Baer if and only if \(R \) is \(n \)-generalized right p.p.
Proof. Let R be n-generalized right $p.q.$-Baer and $a \in R$. Then $r_R(aR)^n = eR$ for some idempotent $e \in R$. Let $x \in r_R(a^n)$. Since R is semicommutative, $Rax \subseteq r_R(a^{n-1})$, which implies that $r_R(aR)^n = eR$. The converse is similar.

There exists an n-generalized right $p.q.$-Baer ring, which is generalized $p.p.$-ring but is not semicommutative.

Example 2.6. Let R be an integral domain and S_4 be defined over R. Then S_4 is abelian 4-generalized $p.p.$-ring and is 4-generalized $p.q.$-Baer by Corollary 2.4. By considering $b = a = e_{32} + e_{14} + e_{34}$ and $c = e_{23}$ in S_4, where e_{ij} denote the matrix units, we have $ab = 0$, and $acb \neq 0$, hence $aS_4b \neq 0$.

Now we conjecture that subrings of n-generalized right $p.q.$-Baer rings are also n-generalized right $p.q.$-Baer. But the answer is negative by the following.

Example 2.7. For a field F, take $F_n = F$ for $n = 1, 2, \ldots$, and let S be the 2×2 matrix ring over the ring $\Pi_{n=1}^{\infty} F_n$. By [7, Proposition 2.1 and Theorem 2.2] we have that S is a $p.q.$-Baer ring. Let $R = \left\{ \begin{array}{cc} \Pi_{n=1}^{\infty} F_n & \bigoplus_{n=1}^{\infty} F_n \\ \bigoplus_{n=1}^{\infty} F_n & < \bigoplus_{n=1}^{\infty} F_n, 1 > \end{array} \right\}$, which is a subring of S, where $< \bigoplus_{n=1}^{\infty} F_n, 1 >$ is the F-algebra generated by $\bigoplus_{n=1}^{\infty} F_n$ and 1. Then by [7, Example 1.6], R is semiprime $p.p$ which is neither right $p.q.$-Baer (and hence not n-generalized right $p.q.$-Baer), nor left $p.q.$-Baer (and hence not n-generalized left $p.q.$-Baer).

3. **Examples of n-generalized $p.q.$-Baer subrings**

Although the class of n-generalized $p.q.$-Baer rings, includes all $p.q.$-Baer rings (and hence, all biregular rings, all quasi-Baer rings, and all abelian $p.p.$ rings), however we show by examples that the class of n-generalized $p.q.$-Baer rings properly extends the aforementioned classes.

By the following example, there is an abelian $p.q.$-Baer (hence semiprime) ring R,
which is not reduced, but S_n is an abelian n-generalized right p.q.-Baer ring that is not semiprime.

Example 3.1. By Zalesskii and Neroslavskii [10, Example 14.17, p.179], there is a simple noetherian ring R that is not a domain and in which 0 and 1 are the only idempotents. Thus R is an abelian p.q.-Baer ring that is neither left nor right p.p, and hence is not reduced. By [7, Proposition 1.17] R is semiprime and by Theorem 2.1, S_n is abelian n-generalized p.q.-Baer, that is not semiprime and hence is not right p.q.-Baer.

Example 3.2. If R is an abelian p.q.-Baer ring, then $R[x]/<x^3>$ is an n-generalized p.q.-Baer ring.

Proof. First we note that $\Theta : T \rightarrow R[x]/<x^3>$ defined by

$$(a_0, a_1, a_2) \rightarrow (a_0 + a_1x + a_2x^2) + <x^3>$$

is an isomorphism, where $T = \{(a, b, c) | a, b, c \in R\}$ is a ring with addition componentwise and the multiplication defined by

$$(a_1, b_1, c_1)(b_2, b_2, c_2) = (a_1b_2 + a_2b_2 + a_1c_2 + b_1b_2 + a_1c_2).$$

Let J be an ideal of T. Suppose $I = \{a \in R | (a, b, c) \in J\}$, it is clear that I is an ideal of R. Since R is p.q.-Baer, $r_R(I) = eR$ for an idempotent $e \in R$. We can show that $r(J^3) = (e, 0, 0)T$, and hence, the result follows.

There exists a commutative n-generalized p.q.-Baer (hence n-generalized p.p.-) ring R, over which S_n is not an n-generalized p.p.-ring.

Example 3.3. Let $p \neq 3$ be a prime integer and Z_{p^3} be the ring of integers modulo p^3, and S_3 be defined over Z_{p^3}. Let $A = pl_3 + e_{13}$, where l_3 is the identity matrix and e_{ij} denote the matrix units. It is clear that $pl_3 + e_{13} + e_{23} \in r_{S_3}(A^3)$ and idempotents of S_3 are l_3 and 0. Hence $r_{S_3}(A^3) = l_3S_3$ and that S_3 is not 3-generalized p.p.-ring, but Z_{p^3} is a 3-generalized p.p.-ring.

Example 3.4. For every abelian quasi-Baer (resp. p.p.-) ring R, by Theorems 2.1 and
2.2, the ring S_n is n-generalized right p.q.-Baer, which is not right p.q.-Baer. Therefore we are able to provide examples of n-generalized right p.q.-Baer rings that is not right p.q.-Baer:

Let F be a field, and $R = F[x]$ be the polynomial ring where x is an indeterminate. Then S_n is a n-generalized right p.q.-Baer ring that is not right p.q.-Baer.

Acknowledgement

The authors are deeply indebted to the referee for many helpful comments and suggestions for the improvement of this paper.

Reference