A certain \(n \)-Generalized Principally Quasi-Baer Subring of the Matrix rings

H. Haj Seyyed Javadi Amirkabir University
A. Moussavi, E. Hashemi: University of Tarbiat Modarres

Abstract

For a fixed positive integer \(n \), we say a ring with identity is \emph{n-generalized right principally quasi-Baer}, if for any principal right ideal \(I \) of \(R \), the right annihilator of \(I^n \) is generated by an idempotent. This class of rings includes the right principally quasi-Baer rings and hence all prime rings. A certain \(n \)-generalized principally quasi-Baer subring of the matrix ring \(M_n(R) \) are studied, and connections to related classes of rings (e.g., p.q.-Baer rings and \(n \)-generalized p.p. rings) are considered.

1. Introduction and Preliminaries

Throughout all rings are assumed to be associative with identity. From [12, 21], a ring \(R \) is (quasi-)Baer if the right annihilator of any (right ideal) nonempty subset of \(R \) is generated, as a right ideal, by an idempotent. Moreover, in [12] Clark proved the left-right symmetry of this condition. He uses this condition to characterize when a finite dimensional algebra with unity over an algebraically closed field is isomorphic to a twisted matrix units semigroup algebra. The class of quasi-Baer rings is a nontrivial generalization of the class of Baer rings. Every prime ring is quasi-Baer, hence prime rings with nonzero right singular ideal are quasi-Baer; but not Baer [24]. For a positive integer \(n > 1 \), the \(n \times n \) matrix ring over a non-Prüfer commutative domain is a prime quasi-Baer ring which is not a Baer ring by [27] and [21, p.17]. The \(n \times n \) (\(n > 1 \)) upper triangular matrix ring over a domain which is not a division ring is quasi-Baer but not

1. 2000 Mathematical Subject Classification. 16D15; 16D40; 16D70.

Keywords and phrases. \(n \)-Generalized p.q.-Baer ring; p.p.-ring; Annihilators; triangular matrix ring
Baer by an example due to Cohn; see [1], [20] and [5]. The theory of Baer and quasi-
Baer rings has come to play an important role and major contributions have been made
in recent years by a number of authors, including Birkenmeier, Chatters, Khuri, Kim,
Hirano and Park (see, for example [1], [4-7], [16], [21], [26] and [28]).

A ring satisfying a generalization of Rickart’s condition [30] (i.e., right annihilator of
any element is generated (as a right ideal) by an idempotent) has a homological
characterization as a right p.p.-ring. A ring R is called a right (resp. left) p.p.-ring if
every principal right (resp. left) ideal is projective. R is called a p.p.-ring (also called a
Rickart ring [2, p.18]), if it is both right and left p.p.-ring. In [9] Chase shows the
concept of p.p.-ring is not left-right symmetric. Small [30] shows that a right p.p.-ring
R is Baer (so p.p), when R is orthogonally finite. Also it is shown by Endo [13] that a
right p.p.-ring R is p.p when R is abelian (i.e., every idempotent is central). Finally
Chatters and Xue [11] prove that in a duo (i.e., every one sided ideal is two sided) p.p.-
ring R, if l is a finitely generated right projective ideal of R, then l is left projective
and a direct summand of an invertible ideal. Following Birkenmeier et al. [7], R is
called right principally quasi-Baer (or simply right p.q.-Baer), if the right annihilator of
a principal right ideal is generated by an idempotent. Equivalently, R is right p.q.-Baer
if R modulo the right annihilator of any principal right ideal is projective. Similarly, left
p.q.-Baer rings can be defined. If R is both right and left p.q.-Baer, then it is called p.q.-
Baer. The class of p.q.-Baer rings includes all biregular rings, all quasi-Baer rings, and
all abelian p.p.-rings. A ring R is said to be p-regular, if for every x ∈ R there exists
a natural number n, depending on x, such that x^n ∈ x^n Rx^n. A ring R is called a
generalized right p.p.-ring if for any x ∈ R the right ideal x^n Rx^n is projective for some
positive integer n, depending on x, or equivalently, if for any x ∈ R the right annihilator
of x^n is generated by an idempotent for some positive integer n, depending on x. A ring
is called generalized p.p.-ring, if it is both generalized right and left p.p.-ring.

Note that Von Neumann regular rings are right (left) p.p.-rings by Goodearl [14,
Theorem 1.1], and a same argument as [14, Theorem 1.1] shows that \(p \)-regular rings are generalized p.p.-rings. Right p.p.-rings are generalized right p.p obviously. See [18] for more details.

Definition 1.1. Given a fixed positive integer \(n \), we say a ring \(R \) is \(n \)-generalized right principally quasi Baer (or \(n \)-generalized right p.q.-Baer), if for all principal right ideal \(I \) of \(R \), the right annihilator of \(I^n \) is generated by an idempotent. Left cases may be defined analogously.

The class of \(n \)-generalized right p.q.-Baer rings includes all right p.q.-Baer rings, (and hence all biregular rings, quasi-Baer rings, abelian p.p.-rings and semicommutative (i.e., if \(R(x) \) is an ideal for all \(x \in R \) generalized p.p rings). Theorem 2.1 in section 2, allows us to construct examples of \(n \)-generalized p.q.-Baer rings that are not p.q.-Baer. Some conditions on the equivalence of \(n \)-generalized p.q.-Baer and \(n \)-generalized p.p.-rings are discussed. However, we show by examples that the class of \(n \)-generalized p.q.-Baer rings properly extends the aforementioned classes.

In this paper, we discuss some type of matrix rings formed over p.q.-Baer or p.p. rings. We study \(n \)-generalized p.q.-Baer subrings of the matrix ring \(M_n(R) \). Theorem 2.2, enables us to generate examples of \(n \)-generalized p.q.-Baer subrings of the matrix ring \(M_n(R) \). Theorem 2.2, which extends [18, Proposition 6], enables us to provide more examples of matrix rings, that are both \(n \)-generalized p.q.-Baer and \(n \)-generalized p.p.-ring. Connections to related classes of rings are investigated. Although the class of \(n \)-generalized p.q.-Baer rings, includes all p.q.-Baer rings (and hence, all biregular rings, and all abelian p.p. rings), however we show by examples that the class of \(n \)-generalized p.q.-Baer rings properly extends the aforementioned classes.

Note that, for a reduced ring (which has no nonzero nilpotent elements), we have \(I_R(Rx) = I_R((Rx)^n) = I_R(x^n) = I_R(x) = r_R(x) = r_R((xR)^n) = r_R(xR) \), for every \(x \in R \) and every positive integer \(n \). Therefore reduced rings are semicommutative and semicommutative rings are abelian. Also for reduced rings the definitions of right p.q.-
Baer, n-generalized right p.q.-Baer, generalized p.p. and p.p.-ring are coincide. This leads one ask whether commutative reduced rings are n-generalized p.q-Baer. However, the answer is negative by the following.

Example 1.2. Let \(p \) be a prime number and \(R = \{(a,b) \in \mathbb{Z} \oplus \mathbb{Z} \mid a \equiv b \pmod{p}\} \), then \(R \) is a commutative reduced ring. Note that the only idempotents of \(R \) are \((0,0)\) and \((1,1)\). One can show that \(r_k((p,0)R) = (0,p)R \), so \(r_k((p,0)R) \) does not contain a nonzero idempotent of \(R \); and hence \(R \) is not n-generalized right quasi-Baer, for any positive integer \(n \).

Lemma 1.3. Let \(R \) be an abelian \(n \)-generalized right p.q.-Baer ring, then \(r_k(l^n) = r_k(l^m) \) for every principal right ideal \(I \) of \(R \) and each positive integer \(m \) with \(n \leq m \).

Proof. It is enough to show that \(r_k(l^n) = r_k(l^{n+1}) \). Let \(x \in r_k(l^{n+1}) \), then \(l^nx \subseteq r_k(l^n) = fR \) for some idempotent \(f \in R \). Hence \(l^nx = l^nxf = 0 \). Thus \(x \in r_k(l^n) \).

2. **N-generalized right principally quasi Baer subrings of the matrix rings**

In this section we discuss some type of matrix rings formed over p.q.-Baer or p.p. rings. Theorem 2.3, which extends [18, Proposition 6], enables us to provide more examples of matrix rings that are both \(n \)-generalized p.q.-Baer and \(n \)-generalized p.p.-ring. We begin with Theorem 2.2 below, which enables us to generate examples of \(n \)-generalized p.q.-Baer subrings of the matrix ring \(M_n(R) \):

Lemma 2.1[18, Lemma 2]. Let \(R \) be an abelian ring and define

\[
S_n := \left\{ \begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} : a,a_{ij} \in R \right\},
\]

with \(n \) a positive integer \(\geq 2 \). Then every idempotent in \(S_n \) is of the form

\[
\begin{pmatrix} f & 0 & \cdots & 0 \\ 0 & f & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f \end{pmatrix}
\]

with \(f^2 = f \in R \).
We will use S_n. Throughout the remainder of the paper, to denote the ring indicated in Lemma 2.1.

Theorem 2.2. If R is an abelian p.q.-Baer ring and $n \geq 2$ is a positive integer, then S_n is an n-generalized right p.q.-Baer ring.

Proof. We proceed by induction on n. It is easy to show that S_2 is a 2-generalized right p.q.-Baer ring. Let I_n be a principal right ideal of S_n. Consider $\begin{bmatrix} \epsilon_{n-1} & & \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}$, and $\begin{bmatrix} \epsilon_{n-1} \\ \vdots \\ 0 \end{bmatrix}$. Let J be the set of entries of the main diagonal of the elements of I_{n-1}. It is clear that J is a principal right ideal of S_{n-1}. By induction hypothesis and Lemma 2.1, there are $x_i, y_i \in S_{n-1}$ for $1 \leq i \leq n$ such that $x_i y_{n-i} = y_{n-i} x_i$. So we have $x_{n-i} + y_{n-i} = 0$. Hence $x_i y_{n-i} = 0$, since R is an abelian ring. Now let

$$X = \begin{bmatrix} x & x_{12} & \cdots & x_{1n} \\ 0 & x & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x \end{bmatrix} \in R_n(I_{n-1})$$

and

$$Y = \begin{bmatrix} a_1 a_2 \cdots a_n & y_{12} & \cdots & y_{1n} \\ 0 & a_2 a_3 \cdots a_n & \cdots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \cdots a_n \end{bmatrix} \in I_{n-1}$$

Since $r_{n-1}(I_{n-1}) = r_{n-1}(I_{n-2}) = e_2 S_{n-1}$, x and x_{ij}'s are in $f_i R$ for each i and j except x_{in}. So we have $a_1 a_2 \cdots a_n x_{in} + y_{in} x = 0$. Hence $y_{in} x = 0$, since $f_i \in B(R)$. Thus $x_{in} \in f_i R$ and hence $r_{n}(I_{n}) \subseteq \epsilon S_{n}$ for

$$e = \begin{bmatrix} f_1 & 0 & \cdots & 0 \\ 0 & f_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f_1 \end{bmatrix} \in S_{n}.$$

Since, for each $Y \in I_{n} e$, all entries of the main diagonal of Y are zero and e is central,

$$I_{n} e = (I_{n} e)^n = 0.$$

Thus $r_{n}(I_{n}) = e S_{n}$. Therefore S_{n} is n-generalized right p.q.-Baer.

The following result, which generalizes [18, Proposition 6], provides examples of
matrix rings that are both n-generalized p.q.-Baer and n-generalized p.p.-ring:

Theorem 2.3. If \(R \) is an abelian p.p.-ring, then \(S_n \) is an abelian \(n \)-generalized p.p.-ring.

Proof. We prove by induction on \(n \). First, we show that the trivial extension \(S_2 \) of \(R \) is 2-generalized right p.p. Let \(A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \in S_2 \) and \(r_n(a) = eR \), with \(e^2 = e \in R \). It is clear that, \(fR \subseteq r_n(A^2) \) with \(f = \begin{pmatrix} e \\ 0 \end{pmatrix} \). Next, let \(A^2 = \begin{pmatrix} x & y \\ 0 & x \end{pmatrix} = 0 \). Since \(R \) is reduced, \(a^2x = ax = 0 \) and \(a^2y = ay = 0 \). Hence \(ex = x \) and \(ey = y \). Thus \(A^2 = \begin{pmatrix} x & y \\ 0 & x \end{pmatrix} = f \begin{pmatrix} x & y \\ 0 & x \end{pmatrix} \).

Therefore \(S_2 \) is 2-generalized right p.p. Now assume \(B = \begin{pmatrix} a & a_{i2} & \cdots & a_{in} \\ 0 & a & \cdots & a^{2n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} \) and \(B_2 = \begin{pmatrix} a & a_{23} & \cdots & a_{2n} \\ 0 & a & \cdots & a_{2n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} \) in \(S_{n-1} \), then by the induction hypothesis, there exist \(e^2 = e_i \in S_{n-1} \), \(f_i = f_i \in R \), such that \(r_{n-1}(B_i^{n-1}) = e_i S_{n-1} \), \(e_i = \begin{pmatrix} f_i & 0 & \cdots & 0 \\ 0 & f_i & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f_i \end{pmatrix} \) for \(i = 1, 2 \). By direct calculations, we have \(r_n(B^{2n-2}) = e S_n \) with \(e = \begin{pmatrix} f & 0 & \cdots & 0 \\ 0 & f & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f \end{pmatrix} \). Since \(r_n(a) = eR \), by [27, Lemma 3], \(r_n(B^n) = r_n(B^{2n-2}) = e S_n \).

Corollary 2.4 [18, Proposition 6]. If \(R \) is a domain, then \(S_n \) is an abelian \(n \)-generalized p.p.-ring.

For a semicommutative ring, the definitions of \(n \)-generalized right p.q.-Baer and \(n \)-generalized right p.p. are coincide:

Proposition 2.5. Let \(R \) be a semicommutative ring. Then \(R \) is \(n \)-generalized right p.q.-Baer if and only if \(R \) is \(n \)-generalized right p.p.
Proof. Let \(R \) be \(n \)-generalized right p.q.-Baer and \(a \in R \). Then \(r_R(aR)^n = eR \) for some idempotent \(e \in R \). Let \(x \in r_R(a^n) \). Since \(R \) is semicommutative, \(Rax \subseteq r_R(a^{n-1}) \), which implies that \(r_R(aR)^n = eR \). The converse is similar.

There exists an \(n \)-generalized right p.q.-Baer ring, which is generalized p.p.-ring but is not semicommutative.

Example 2.6. Let \(R \) be an integral domain and \(S_4 \) be defined over \(R \). Then \(S_4 \) is abelian \(4 \)-generalized p.p.-ring and is \(4 \)-generalized p.q.-Baer by Corollary 2.4. By considering \(b = a = e_{22} + e_{14} + e_{34} \) and \(c = e_{23} \) in \(S_4 \), where \(e_{ij} \) denote the matrix units, we have \(ab = 0 \), and \(acb \neq 0 \), hence \(aSb \neq 0 \).

Now we conjecture that subrings of \(n \)-generalized right p.q.-Baer rings are also \(n \)-generalized right p.q.-Baer. But the answer is negative by the following.

Example 2.7. For a field \(F \), take \(F_n = F \) for \(n = 1, 2, \ldots \), and let \(S \) be the \(2 \times 2 \) matrix ring over the ring \(\prod_{n=1}^{\infty} F_n \). By [7, Proposition 2.1 and Theorem 2.2] we have that \(S \) is a p.q.-Baer ring. Let

\[
R = \left(\begin{array}{cc}
\prod_{n=1}^{\infty} F_n & \bigoplus_{n=1}^{\infty} F_n \\
\bigoplus_{n=1}^{\infty} F_n & < \bigoplus_{n=1}^{\infty} F_n, 1 >
\end{array} \right),
\]

which is a subring of \(S \), where \(< \bigoplus_{n=1}^{\infty} F_n, 1 > \) is the \(F \)-algebra generated by \(\bigoplus_{n=1}^{\infty} F_n \) and 1. Then by [7, Example 1.6], \(R \) is semiprime p.p which is neither right p.q.-Baer (and hence not \(n \)-generalized right p.q.-Baer), nor left p.q.-Baer (and hence not \(n \)-generalized left p.q.-Baer).

3. Examples of \(n \)-generalized p.q.-Baer subrings

Although the class of \(n \)-generalized p.q.-Baer rings, includes all p.q.-Baer rings (and hence, all biregular rings, all quasi-Baer rings, and all abelian p.p. rings), however we show by examples that the class of \(n \)-generalized p.q.-Baer rings properly extends the aforementioned classes.

By the following example, there is an abelian p.q.-Baer (hence semiprime) ring \(R \),
which is not reduced, but S_n is an abelian n-generalized right p.q.-Baer ring that is not semiprime.

Example 3.1. By Zalesskii and Neroslavskii [10, Example 14.17, p.179], there is a simple noetherian ring R that is not a domain and in which 0 and 1 are the only idempotents. Thus R is an abelian p.q.-Baer ring that is neither left nor right p.p., and hence is not reduced. By [7, Proposition 1.17] R is semiprime and by Theorem 2.1, S_n is abelian n-generalized p.q.-Baer, that is not semiprime and hence is not right p.q.-Baer.

Example 3.2. If R is an abelian p.q.-Baer ring, then $R[x]/ (x^3)$ is an n-generalized p.q.-Baer ring.

Proof. First we note that $\Theta : T \rightarrow R[x]/ (x^3)$ defined by

$$(a_0,a_1,a_2) \rightarrow (a_0 + a_1x + a_2x^2) + (x^3)$$

is an isomorphism, where $T = \{(a,b,c) | a,b,c \in R\}$ is a ring with addition componentwise and the multiplication defined by

$$(a_1,b_1,c_1)(a_2,b_2,c_2) = (a_1a_2,b_1b_2 + b_1a_2 ,a_1c_2 + b_2a_2 + c_1a_2).$$

Let I be an ideal of T. Suppose $I = \{(a,b,c) \in T\}$, it is clear that I is an ideal of R. Since R is p.q.-Baer, $r_R(I) = eR$ for an idempotent $e \in R$. We can show that $r(I^3) = \langle e,0,0\rangle T$, and hence, the result follows.

There exists a commutative n-generalized p.q.-Baer (hence n-generalized p.p.-) ring R, over which S_n is not an n-generalized p.p.-ring.

Example 3.3. Let $p = 3$ be a prime integer and Z_{p^3} be the ring of integers modulo p^3, and S_3 be defined over Z_{p^3}. Let $A = pl_3 + e_{13}$, where l_3 is the identity matrix and e_i denote the matrix units. It is clear that $pl_3 + e_3 + e_{22} \in r_{S_n}(A^3)$ and idempotents of S_3 are l_3 and 0. Hence $r_{S_3}(A^3) = l_3S_3$ and that S_3 is not 3-generalized p.p.-ring, but Z_{p^3} is a 3-generalized p.p.-ring.

Example 3.4. For every abelian quasi-Baer (resp. p.p.-) ring R, by Theorems 2.1 and
2.2, the ring S_n is n-generalized right p.q.-Baer, which is not right p.q.-Baer. Therefore we are able to provide examples of n-generalized right p.q.-Baer rings that is not right p.q.-Baer:

Let F be a field, and $R = F[x]$ be the polynomial ring where x is an indeterminate. Then S_n is a n-generalized right p.q.-Baer ring that is not right p.q.-Baer.

Acknowledgement

The authors are deeply indebted to the referee for many helpful comments and suggestions for the improvement of this paper.

Reference