بررسی لايه‌هاي فروالکتریک به وسيله مدل آيزينگ در یک ميدان عرضي

صبایر فرجامی شاپسه و محمدعلی سلیمانی: دانشگاه گیلان

چکیده
فیلم‌های فروالکتریک با استفاده از مدل آيزینگ در یک میدان عرضی تحت تزییب میدان متوسط مورد بحث و بررسی قرار داده شده است. فیلم‌های طبیعی لايه‌هاي تابع مکعبی ساده و در حال حاضر نسبت به لايه‌هاي گلکسی متوقف باشند. فرض می‌کنم که قدرت تبدیل شبه اسپین‌ها و میدان عرضی لايه‌هاي سطحی نسبت به لايه‌هاي گلکسی متوقف باشد. ما با این مدل روابط وابسته برای دیگر فیلترهایی افزایش یافته است. نیم‌پر انتشار نظر به دست می‌آوریم. در نهایت فیلم‌هایی دمای کوری، فیلم مشبکه دمای کوری، که گونه‌های زیستگاه هستند تا در میدان عرضی بزرگتر از حالت بحرانی شود. هنوز گزارش‌های میدانی در حالت فروالکتریک وجود ندارد. در فیلم‌هایی با قطره سطحی، افزایش یافته و $N > 2$ مکانیزم پارامتر نظم در لايه‌هاي مجاور پروتون‌های لايه سطحی رخ می‌دهد.

مقدمه
اگر انتظار و سطح روي گذارفاژ فیلم‌های لايه‌هاي نازک فروالکتریک مدت کوتاه که مورد بررسی واقع شده است، اما به دلیل توسعه فروالکتریک و نشأ گرفتنی آماده سازی نمونه‌های کل بیش از بالاترین تپه‌گزارش‌هاي جامع و مقید سخت است. فروالکتریک (KDP) نوع نتیجه‌گیری‌های متعددی به دیدگاه‌ها و مسئولانه مطالعه ماست. این نوع فروالکتریک (TIM) بررسی کرده است. نمونه و دمای کوری و طبیعه باران‌های موج شبه اسپین به سبک و روش طبقه‌بندی وزکس در 1974 و «کتاب و همکاران در 1984» که جستجو شده است و در اغلب این بحث‌ها از سیستم نیمه‌فیزیکی استفاده کرده‌اند. تغییر شکل سطح، قدرت تبدیل سطح و زمان را نشان می‌دهد. اگر درکره‌هاي اخیر و استرسگی دمای کوری به ضخامت (تعداد لايه‌هاي اتمی) یک فیلم نازک به خوبی با تغییر سطح و ثبات تبدیل و میدان عرضی، با استفاده از تاسیس میدان متوسط $[3]$ و تاسیس اثر نمودار $[4]$ بررسی شده است. به عنوان مثال، خواص مغناطیسی فیلم‌های TIM روي یک شبکه مکعبی مرکز حجمی (BCC) به وسیله تاسیس اثر میدان در

واژه‌های کلیدی: مدل آيزینگ، تزییب میدان متوسط، دیگر فاز، پارامتر نظم دمای کوری، قدرت تبدیلی، میدان عرضی.
1992 توسط ونگ تحقیق شده است. در این کار، فرض شده است که پارامترهای مدل (قدرت تبادلی و میزان عرضی)، تنها در خارجی‌ترین لایه‌های سطحی به مقادیر کیفیت تاواز دارد. در اینجا بحث اصلی بررسی اثر تغییرات دما و کوری و گاز و نیم‌رخ‌هایی قطعی‌تر که در این بررسی به دست آمده است.

1- مبانی تئوری و هاملتوئیک مدل آبنیک

یک فیلم فروالکتریک با شبه اسپین‌ها را که روی شبکه‌ای مکعبی و ساده قرار گرفته و از N لایه اتمی در جهت محور Z تکین شده است و نظر می‌گیریم. سیستم را می‌توان به وسیله هاملتوئیک آبنیک در یک میدان عرضی، به شکل زیر توصیف کرد [1]:

\[H = -\sum_i \Omega_i S_i^z - \frac{1}{2} \sum_{ij} J_{ij} S_i^z S_j^z \]

در اینجا، S_i^z مولکول‌های عملکرد اسپینی $\frac{1}{2}$ در جایگاه i از همستند که قطبه موضعی $P_{z,i}$ با متوسطگرما S_i^z متناسب است و Ω_i میزان عرضی است که برای فروالکتریک‌هایی که دارای پیوند هیدروژنی هستند، توانایی یک پروتون به تولید زنی از وضعیتی به وضعیت دیگر را نشان می‌دهد. و J_{ij} توانایی تبادلی بین شبه اسپین‌های مکانهای i و j. از این مسئله، می‌توانیم برای تغییرات انتگرال فیزیکی Ω_i و در سایر جاها Ω باشد و فرمول Ω را همکننده نزدیک‌ترین همسایه بایستی در طبقه‌های سطحی Ω_i.

و در سایر جاها Ω باشد.

در شکل (1) نمودار طرح‌واره قدرت تبادلی و میزان عرضی فیلم‌های با یک لایه سطحی (الف) و دو لایه سطحی (ب) نشان داده است. Ω_i میزان عرضی از همستند در مرزی و N تعداد لایه‌های سطحی در مزرعه نامیده می‌شود. خواص آماری هاملتوئیک رابطه (1) را با استفاده از تقیی میزان متوسط بررسی می‌کنیم. با مشتق گری از متوسط حرارتی رابطه (1) می‌توانیم شبیه اسپین‌ها را به صورت زیر داشته باشیم [2]:

\[R_i = \frac{1}{S_i = \frac{1}{2} \sum_i \frac{1}{K_{i,i}} \tanh \left(\frac{\epsilon_i}{2K_{i,i}} \right)} \]

که در اینجا ϵ_i میزان متوسطی است که روی اسپین i اتم عمل می‌کند.

\[\epsilon_i = \sqrt{\left[\Omega_i^2 + (\sum_j S_j^z)^2 \right]^2} \]

برای یک فیلم نازک فروالکتریک با دو لایه سطحی متوسط حرارتی اسپین‌ها را از روابط زیر به دست می‌آوریم.

برای لایه‌های سطحی دارمی:

\[R_i = \frac{4J_i R_i + J_i R_i^2}{2L_i \tanh \frac{L_i}{2K_{i,i}}} \]
بزرگسازی لاشه‌های فروکنیک به وسیله مدل آزمایشگاه‌ی ...}

\[R_2 = \frac{4 J_1 R_2 + J_1 R_1 + J_3}{2 L_2} \tan \frac{L_2}{2k_B T} \]

و برای لاشه‌های توده‌ای

\[R_n = \frac{4 J_{R_n} + J_{R_{n-1}} + J_{R_{n+1}}}{2 L_n} \tan \frac{L_n}{2k_B T} \]

که در روابط فوق داریم.

\[L_1 = \sqrt{\Omega_x^2 + (4 J_1 R_1 + J_1 R_2)^2} \]

\[L_2 = \sqrt{\Omega_x^2 + (4 J_1 R_2 + J_1 R_1 + J_3)^2} \]

\[L_n = \sqrt{\Omega_x^2 + (4 J_{R_n} + J_{R_{n-1}} + J_{R_{n+1}})^2} \]

اگر محاسبات بعدی برای، معادلات فوق، یا مشابه آنها، برای فیلدهایی با تعداد لاشه‌های سطحی بیشتر از 2 است، مناسب‌تر است که قطعیت سطحی مستقیماً با استفاده از رابطه‌ای مثل (2) به ذکر آن است."}

غرفه‌ی 1 نمودار قدرت تبدیل و میدان عرضی در (الف) مدل یک لاشه سطحی (ب) و لاشه‌سی

2- دمای کوری و دیگرگاه‌های فاز

وقتی از دمای کوری تا دمای کوری تندیک می‌شود، متوسط حرارتی اسپین‌ها به صفر می‌رسد. از آنجا که جملات مرتبه بالاتر را نگه می‌داریم، اگر روابط (4) را برای تبیین به دستگاه معادلات زیر می‌پرسیم.

\[\frac{4 J}{J} - X_1 R_1 + J \frac{J}{J} R_2 = 0 \]

\[\frac{J}{J} R_1 + (4 \frac{J}{J} - X_1) R_2 + R_3 = 0 \]

\[R_{n-1} + (4 - X) R_n + R_{n+1} = 0 \]
که در معادلات فوق

\[X = \frac{2\Omega}{J} \text{Cot}(\frac{\Omega}{2K s T_c}) \quad (13) \]

\[X_s = \frac{2\Omega_s}{J} \text{Cot}(\frac{\Omega_s}{2K s T_c}) \quad (14) \]

dمای کوری فیلم (\(\Omega_s \)) در این شرط که برای داشتن جواب

غیرصفر بايد دترمینان ضرایب صفر شود. به دست آورد. با دنبال کردن عبارات میتوان دمای کوری فیلم

لایه‌ای را تعداد لاپهای سطحی متقارن را به دست آورد.

برای یک لاپهای سطحی (\(N_s = 1 \))

\[(X_s - \frac{4J}{J})B_{M-1} - B_{M-2} = 0 \quad (15) \]

و برای دو لاپهای سطحی (\(N_s = 2 \))

\[[(X_s - \frac{4J}{J})^2 - (\frac{J}{J})^2]B_{M-2} - (X_s - \frac{4J}{J})B_{M-3} = 0 \quad (16) \]

در این معادلات برای فیلم‌هایی با تعداد لاپهای زوج (\(M = \frac{N}{2} \))

\[B_m = \frac{\text{Sinh}(M + 1)\Phi - \text{Sinh}[M\Phi]}{\text{Sinh}\Phi} \quad (17) \]

\[B_m = 2\text{Cosh}[M\Phi] \quad (18) \]

که در این روابط داریم:

\[\text{Cosh}\Phi = \frac{X - 4}{2} \quad (19) \]

و طبق 2 x 4 باشد معادلات فوق هنوز حفظ می‌شوند؛ اما توابع هیرلولکس به توابع مثلثاتی تبدیل

می‌شوند. به دست آوردن دیدی کلی از دیاغرام‌ها فاز رهیافت سارمنتو و تاک در 1993 از دنبال

می‌کنیم[4].

دیاغرام فاز را در صفحه \(\frac{\Omega}{J} \) و \(\frac{J}{J} \) نماید. با P فاز فرآیندکریک با طبیعی سطحی کاهش یافته را با

تشخیص سه ناحیه دیاغرام‌های فاز فاز فرآیندکریک را با \(\text{E} \) و فاز فرآیندکریک با طبیعی سطحی افزایش یافته را با \(\text{E} \) که در این حالت \(T_c(\text{film}) < T_c(\text{bulk}) \)

و دیاغرام فاز به ازای \(T_c \) و در این تعداد لاپهای

نام‌دهم. نمودار‌های دیاغرام فاز به ازای \(T_c \) تعداد لاپهای

सطحی \(N_s \) مختلف از معادلات (16) و (17) به دست می‌آید. این نمودارها دارای دو شاخه هستند. شاخه اول

که مرز میان \(E \) و \(R \) مستقل از ضخامت فیلم (تعداد لاپهای اتمی) است، به ازای \(x = 6 \).
بررسی لایه‌های فیلم‌های با کمپیوتر به وسیله مدل آینه‌ای...

صایدر فرجامی شاهسینه، محمد علی سلیمانی

درجه مورد، نامه فیلم‌های با کمپیوتر به وسیله مدل آینه‌ای...}
سی بازی شیمی، محمد علی سلیمانی
بررسی لاشه‌های فرمول‌کردنی به وسیله مدل آزینگ

3- بررسی نیم‌رخ‌های قطبی در لاشه‌های نازک فرمول‌کردنی

مقدمه: نیم‌رخ‌های قطبی در فیلم‌های فرمول‌کردنی با کمیت بدن توسط کره‌هایی در عضویت درون نواحی و معادلاتی (4) یافت (9) در برآوردها توسط می‌گردد. برای نمودارهای Rn=7، در حالت‌های مختلف نیم‌رخ‌های پارامتر نظر مستند، که از نتیجه‌گیری‌های تکنولوژیکی کام و همکارانش (5) در 1983 و تا [6] در 1993 به دست آمدهان. برای رسم نیم‌رخ‌های قطبی به روش عرضی، حل تقریبی معادلات (4) تا (9) بر اساس تاریکی نیوتون رافسون به دست می‌آید. در این روش شروع حل در پایین‌ترین در حد سه‌گانه می‌شود و متعادلین در دامنه داده شده حالت خود سازگاری در دمای پیشنهاده دقت می‌آید. تغییرات دما را به صورت نسبی در نظر می‌گیریم.

شکل (4) نیم‌رخ‌های قطبی در بازی فیلم در ابتدای داوآ و بازی برای Rn=7 (فیلم‌های با یک لاشه سطحی) نشان می‌دهد هر نمونه نیم‌رخ برای E=1 = Ω / J که مربوط به دایگرام فاز (2-الف) می‌شود. نمودارهای پارامترهای Rn=7 در حالت دایگرام فاز (2-الف) است. با توجه به شکل (4) قطبی در سطح فیلم در همه دماهای با پایین‌ترین دمای شده است. احتمال چسبندگی میزان فیلم تناها درنیزدیکی دماهای کنار تشخیص است. نمودار (4-ب) برای نقطه در نیم‌رخ E (فیلم‌های افزایش یافته) دایگرام فاز است. که مقدار Rn=7 در نیم‌رخ افزایش یافته است. نمودار (4-ج) نیز برای نقطه دیگری درنیزدیکی E در نیم‌رخ (2-الف) فاز در نیم‌رخ 3> Ω / J است. برای شده است، که در این مورد در که فاز پایین‌ترین محسوس است. اثر نیم‌رخ در دیگر لاشه‌های سطحی باعث انتقال ماکزیم قطبی به زیر‌لاشه‌های 2 و n=11 می‌شود. کاهش قطبی در لاشه‌های سطحی با برآوردها به تعدادهای بیشتر و نمودارهای با دو لاشه سطحی احتمال قطبی مرکزی فیلم از مقادیر توده‌ای بیشتر است. می‌شود و n=12 می‌شود. در نتیجه، سطح فیلم قابل توجهی دارد.نمودارهای مربوط به حالت دو لاشه سطحی 2 در شکل (5) نشان
دسته‌بندی مقاله
بررسی باه‌های فوتوکلریک به وسیله مدل آیزوئنگ

صورت فرمول شیب‌های E (شکل ۵) با شکل (۴) بیشتر در منحنی ناحیه (الف و ب) منعکس است.

شکل ۴. نیم‌مرخ های پارامتر ضریب حس n بر حسب R بین لایه‌ای با b = 1 که پارامترها به صورت J = J (الف) و J = J (ب) است. در (الف و ب) J = J (الف) و ج (ب) J = J (الف) و ج (ب) محور قائم 2R. برای مواد که یک ذرات متوازی و در (ج) محدوده ها همواره به نسبت دماهای (الف و ب) است. ضلایین ترین منحنی مربوط به بالاترین نسبت دما است.

شکل ۵. نیم‌مرخ های پارامتر ضریب حس n بر حسب R بین لایه‌ای با b = 2 که پارامترهای شکل ۵ (الف و ب) همان پارامترهای شکل (۴) است.
نتیجه گیری
ما تئوری میدان متوازنا برای فیلم‌های نازک فروالکتریک که با استفاده از مدل آیزینگ توصیف شده‌اند، بسط داده‌ایم و عبارات کلی نمايی که برای برای پارامترهای مختلف مدل به دست آورده‌ایم. در اینجا مشاهده می‌شود که دیگر فاز فاز گیری به فاز تعدادی که در سطح مورد نظر می‌باشد، فاز فروالکتریک با قطعیت سطحی کاهش یافته R و فاز پارالکتریک که مرزی بین E و فاز فروالکتریک با قطعیت سطحی افزایش یافته R و فاز پارالکتریک با قطعیت سطحی افزایش یافته E و فاز پارالکتریک با قطعیت سطحی افزایش یافته است. اما مرز بین فاز فروالکتریک و پارالکتریک وابسته به ضه‌خامت است و با افزایش ضخامت به سمت ناحیه پارالکتریک جا به جا می‌شود. وقتی قدرت تبادل سطحی خیلی قوی است، حتی جابه‌که هیچگی از افتاده و عدم انتقال E و F تلفیق که می‌تواند به سمت پایین یکی از می‌شود. برای فاز فروالکتریک با قطعیت سطحی کاهش یافته R و فاز پارالکتریک که مرزی بین E و F تلفیق که می‌تواند به سمت پایین یکی از می‌شود. برای قطعیت در سطح به سمت پایین یکی از می‌شود. برای قطعیت در سطح به سمت پایین یکی از می‌شود. برای قطعیت در سطح به سمت پایین یکی از می‌شود. برای قطعیت در سطح به سمت پایین یکی از می‌شود. برای قطعیت در سطح به سمت پایین یکی از می‌شود. برای قطعیت در سطح به سمت پایین یکی از می‌شود. برای قطعیت در سطح به سمت پایین یکی از می‌شود. برای قطعیت در سطح به سمت پایین یکی از می‌شود. برای قطعیت در سطح به سمت پایین یکی از می‌شود. برای قطعیت در سطح به سمت پایین یکی از می‌شود. برای قطعیت در سطح به سمت پایین یکی از می‌شود. برای قطعیت در سطح به سمت پایین یکی از می‌شود. برای قطعیت در سطح به سمت پایین یکی از می‌شود. برای قطعیت در سطح به سمت پایین یکی از می‌شود. برای قطعیت در سطح به سمت پایین یکی از می‌شود. برای قطعیت در سطح به سمت پایین یکی از می‌شود. برای C. Blinc and B. Zeks, Soft Modes in Ferroelectrics and Antiferroelectrics (Amsterdam: North-Holland) (1974).

