تأثیر ذرات مبوس بر انسباست پلاسماس به خلاً
در حضور میدان الکترومغناطیسی

جاوید ضميرانوری و محمدرضا روحانی: دانشگاه تربیت دبیر شهید رجایی

چکیده
در این مقاله با استفاده از مثل شارهای برای پلاسماس، نقش ذرات مبوس در انسباست پلاسماس به خلاً در حضور میدان الکترومغناطیسی قوی مورد بررسی قرار گرفته است. در ناحیه غیر خطی عداد ذرات مبوس افزایش یافته است و تأثیر آنها قابل ملاحظه است. مقایسه نتایج به دست آمده با موردی که در آن دیگر ذرات مبوس حذف شده است نشان می‌دهد که به‌واسطه کاهش سرعت انتشار مزرع پلاسماس و خلاً، سرعت جبهه موج افزایش می‌یابد.

مقدمه
امروزه مقوله انسباست پلاسماس در حضور میدان الکترومغناطیسی به دلیل تنواع کاربردهای EM ویژه‌ای برخوردی است. مهم‌ترین زمینه کاربرد آن در بررسی مراحل مختلف ICF هنگامی که قرص دوتروم، ترمیم‌یاب به‌طور همسان‌گردد توسط لیزرها قوی مورد استفاده قرار می‌گیرد، پلاسماسی در دل قرص به وجود می‌آید که ضعف به‌کنش با میدان موج لیزری می‌شود. در این انسباست موج ضربه‌ای به وجود می‌آید که به طرف مرکز قرص جرکت می‌کند و باعث تراکم قرص و مهیا شدن شرایط برای انجام گرفن یوز می‌شود. مقوله فوق در پلاسماسی غباری و اختیار فیزیک نیرو مورد توجه قرار گرفته است.

از انتشار اولین مقاله در این زمینه سال‌ها می‌گذرد و هنوز مطالعات نظری و عملی در این زمینه ادامه دارد. نتیجه‌ای مطالعات انتشار مقالات متعددی است که به جنبه‌های مختلف این فرآیند برداخته است و هر یک تحت شرایط معین به‌نام نجیر شده است. نکته قابل توجه این است که در دانشمندی بالای گرخی نظری در زمینه که در جاهایی پتانسیل داخل پلاسماس می‌شود، هنوز نشده است. تعداد این نشته‌ها از ذرات که انرژی لازم برای فرار از چاه پتانسیل را ندارند با افراش عمق دمای (رزیم‌های غیر خطی) افراش می‌یابند. بنابراین در ناحیه غیرخطی که دامنه‌ها به‌سیار بزرگ است، تعداد این ذرات قابل ملاحظه است و می‌توان تأثیر ناشی از حضور آنها را نابی‌جا گرفت.

در ادامه سخن، ابتدا به طورجمال راجع به فرآیند مبوس سازی و چگالی ذرات مبوس بحث می‌شود، سپس

1- Inertial Confinement Fusion
 ضمن فرمول بندي انبات پلاسمام به خلا در حضور میدان الکترومغناطیسی، معادلات غیرخطی جفت شده مربوط به این سیستم به دست می‌آید و در پایان با حل عددی این معادلات به بررسی نتایج و مقایسه آن با نتایج قبیلی خواهند پدیدا.

فرآیند محبوس سازی ذرات

فرآیند محبوس سازی اساساً به دو روش انجام می‌شود:
الف) محبوس سازی برخوردی در این مکانیسم ذرات که در ابتدا آزاد است (انرژی لازم برای فرار از جاه پتانسیل را دارد) پس از برخورد با ذرات دیگر انرژی می‌شود. در این مکانیسم به تخفیف می‌شود.
ب) محبوس سازی غیربرخوردی در این روش، محبوس سازی ذرات اساساً به دلیل تغییرات زمانی پتانسیل امکان محبوس سازی ذرات فراهم می‌شود. این مکانیسم به دو گروه زیر تقسیم می‌شود:
ب- 1) محبوس سازی آدیاباتیک
ب- 2) محبوس سازی آنتی
در روش نخست تغییرات میدان به آرامی صورت می‌گیرد. اگر فرمول نوسانات ذره داخل جاه پتانسیل را با زمان نشان دهنده تغییرات میدان را با ω و فرض آدیاباتیک بودن فرآیند خواهد بود.
گروهی در سال ۱۹۶۸ با استفاده از نسبی جنبشی و اعمال شرایط مرزی در فضای فاز روابط تابع توزیع ذرات نشان داد که چگالی ذرات از رابطه زیر به دست می‌آید [1] :

\[n = n_0 e^{-\frac{\omega}{m}} F(\phi_m - \phi) \]

\[t=0 \]

\[\rho \]

\[\rho_0 \]

\[0 \]

\[\text{شکل ۱: پلاسمام به قطب در حال تغییر} \]

۱- adiabatic trapping ۲- spontaneous trapping
فرمول بندی مساله

پلزما انیکت باید با چگالی جرمی \(\rho \) و درجه حرارت \(T \) را که در لحظه \(t \) از فضای \(0 < z < \) دارد که در لحظه \(t \) میدان الکترومغناطیسی روی پلزما انیکت شروع به ازکار کرده است. در نظریه میژن جنگ و مرز پلزما با خلا یک لایه پلزما انیکت غیر همگن به وجود می‌آید (شکل 2). فرض می‌کنیم در حین بر هم کش هندسه مساله تغییر نمی‌کند وی نتیجه یک بعید مساله حفظ می‌شود (در مورد برهم کش لیزر با پلزما انیکت نیروی کویکچ بوک دیش هم‌زمان با ناحیه غیرهمگن نسبت به ابعاد پلزما لیزری است). تحت تأثیر میدان فرکانس بالا EM نیروی گرانر ۱ میانگین باعث جدایی بارهای الکتریکی و تولید امواج طولی با فرکانس پایین می‌شود. در صورتی که شدت موج طولی برانگیخته شده

\[
F(x) = e^{-\frac{2\sqrt{x}}{\sqrt{\pi}}} \int_0^x e^{-t^2} dt
\]

در قسمت (ب) تغییرات میدان قنار سریع انقلاب می‌افتد که ذرات فرصت کافی برای درک محسوس شدن را ندارند.

\[
\rho = \rho_0 e^{-t/T}
\]

شکل 2: انسیاب پلزما در حضور میدان الکترومغناطیسی

1. Pondermotive force
به انتظار کافی زیاد باشد، میتوانند ذرات پلاسمای مخبوس می‌کنند و توزیع آن‌ها را در فضای فاز تغییر دهد. این مکانیزم گیری‌های میتوان باعث تغییر مشخصه‌های انشار پلاسمای خلا شود. در این حالت پتانسیل مؤثری که ذرات احساس می‌کنند، از رابطه زیر به دست می‌آید [۴] و [۵]:

\[\phi_{\text{eff}} = \phi_s - \frac{e|E_s|^2}{2m\omega^2} \]

که در آن \(\phi_s \) پتانسیل ناشی از جدایی بارها و جمله دوم پتانسیل نیروی گرانرود است. معادلات حاکم بر یونهای سردر شامل معادله اندازه حرکت و پیوستگی است:

\[\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial z} = -\frac{1}{\rho} \left(c_s^2 \frac{\partial \rho}{\partial z} + F_{HF} \right) \tag{1} \]

\[\frac{\partial \rho}{\partial t} + \frac{\partial (\rho v)}{\partial z} = 0 \tag{2} \]

که در این قریب سرعت صوت که تابعی از جیگالی است \(c_s = \sqrt{\frac{p/M}{\rho}} \)

\(\gamma \) ضریب انرژی‌پذیری \(\rho \) می‌باشد.

که در آن \(F_{HF} \) جرم پرتوی است.

\[F_{HF} = \frac{1}{16\pi} (e-1) \frac{\partial}{\partial z} |E|^2 \tag{3} \]

که در آن \(\rho \) ضریب گذشته پلاسمای EM میدان الکتریکی موج است. در پلاسمای غیربرخورداری

\[\varepsilon(\rho) = 1 - \frac{\omega_p^2(\rho)}{\omega_s^2} = 1 - \frac{\rho}{\rho_e} \tag{4} \]

که در آن \(\omega_p \) فرکانس موج الکترومغناطیسی و \(\omega_s \) جرم الکترون، \(\rho_e = (4\pi e^2\rho)/(mM) \) است. با توجه به بحث مربوط به ذرات مخبوس، چگالی ذرات در پلاسمای شبه خنی به دست می‌آید:

\[\tilde{\rho} = \frac{F \left[\frac{1}{2} \Omega^2 \left(E_m^2 - E_e^2 \right) \right]}{F \left[\frac{1}{2} \Omega^2 \left(E_e^2 + E_m^2 \right) \right]} \tag{5} \]

که در آن \(\Omega^2 = \omega_p^2(\rho_e)/\omega_s^2 \)

\(\tilde{\rho} = \rho/\rho_e \)

ماکزیمم میدان الکتریکی به‌ناجار

\[\frac{|E|^2}{16\pi\rho_e c_e^2} \rightarrow |E|^2 \tag{6} \]
با قرار دادن \bar{p} از معادله (5) در (3) خواهیم داشت:

$$\frac{F_{HF}}{\rho_c^2} = -\frac{\Omega^4}{2} \frac{\rho}{\bar{\rho}} - \frac{2}{\sqrt{\pi}} \frac{E_m^2 - E_s^2}{F(\frac{E_s^2}{E_m^2})} \frac{\partial \bar{\rho}}{\partial z}$$

با قرار دادن در معادلات شارداری و معرفی کمیت‌های F_{HF}، در معادلات به صورت زیر نوشته می‌شود:

$$\frac{\partial \bar{u}}{\partial t} + \bar{u} \frac{\partial \bar{u}}{\partial z} = -\frac{1}{\bar{\rho}} \left(\bar{c}_s^2 \right) \frac{\partial \bar{\rho}}{\partial z}$$

(4)

$$\frac{\partial \bar{\rho}}{\partial t} + \frac{\partial (\bar{\rho} \bar{u})}{\partial z} = 0$$

(5)

که در آن \bar{c}_s سرعت مؤثر صوت از رابطه زیر به دست می‌آید:

$$\bar{c}_s^2 = \bar{c}_s^2 + \frac{2}{4} \frac{\rho}{\bar{\rho}} - \frac{2}{\sqrt{\pi}} \frac{E_m^2 - E_s^2}{F(\frac{E_s^2}{E_m^2})}$$

(6)

معادلات (4) و (5) مجموعه معادلات دیفرانسیل غیرخطی جفت شده‌ای را تشکیل می‌دهند که در آن اثر مربوط به میدان الکترومغناطیسی در جمله دوم مربوط به تعیین \bar{c}_s بهره‌مند است. توجه داریم که شکل تابعی وابستگی جمله مورد نظر به \bar{c}_s متاثر از حضور ذرات محسوس در مساله است. در غیاب ذرات محسوس سرعت مؤثر از رابطه زیر به دست می‌آید (2):

$$\bar{c}_s^2 = \bar{c}_s^2 + \frac{1}{4} A \Omega^4 \bar{\rho} (1 - \Omega^2 \bar{\rho})^{-3/2}$$

(7)

که در آن $A = E_m^2 / (8\pi \rho_c^2 \bar{c}_s^2)$ است. جمله دورم رابطه فوق اثر وجود میدان الکترومغناطیسی در انیساتور پلاستیک را نشان می‌دهد که در مرجع (2) اجمالاً به آن برخی اشتهای دیگر متعلق می‌باشد و نتایج آن در شکل‌ها 3 و 4 نشان داده شده است.

نکته بسیار مهمی که باید به آن دقت کرد اینجا نادیده گرفته شده است که در مارکشهای بالا اثرات غیرخطی مربوط به ذرات محسوس قابل ملاحظه‌ای نداشت با استفاده از رابطه (4) که در جمله (6) به آن اشاره شده ناصحیح است. در این حالت برای اگر ذرات محسوس بازیابی از رابطه (8) برای حل معادلات (4) و استفاده کرد. جواب‌های معادلات فوق در غیاب ذرات محسوس (شکل‌ها 3 و 4) که با حل معادلات (4) و (7) به دست می‌آید، نشان می‌دهد که سرعت انتشار پلاستیک به خالاً و سرعت جنبه مو در مقاومت با حالتی که موج الکترومغناطیسی وجود ندارد افزایش می‌یابد. به شکل 3 جواب‌های ریاضی به ارزه 1 = 0، $A = 3$ و $\Omega = 5/7$ و به دست آمده شده است. در شکل 4 پارامتر 10 A اما پارامترهای دیگر

1- Effective Sound velocity

51
یکسان انتخاب شده است. در شکل‌های ۱۰ و ۱۱ نمودارهای مختلف به ازای مقادیر مختلف \(\Omega \) رسم شده است. در این
دو شکل نمودارهایی که با نقطه چیز مشخص شده‌اند، نسبت آزاد پلاسمای را در غیاب میدان الکترومغناطیسی
نشان می‌دهد.

برای درک اثر ذرات محسوس با مدل معادلات (۳) و (۷) را با جایگذاری \(\varepsilon \) از فرمول (۸) حل کرد. در این
حالته به دلیل شکل پیچیده تابع \(F(x) \) در فرمول الف، حل تحلیلی وجود ندارد. نتیجه حل عددی این معادلات
با استفاده از کامپیوتری یک بعیج در شکل ۵ نشان داده شده است.

\[\frac{\rho}{\rho_0} = \frac{1}{1 + A \varepsilon} \]

\[\varepsilon = \frac{\varepsilon_0}{\rho_0} \]

شکل ۳: جواب ریاضی معادلات شارداهی به ازای \(\varepsilon = 1 \) و \(A = 3 \) می‌باشد.

\[\Omega = \frac{\varepsilon_0}{\rho_0} \]

شکل ۴: جواب ریاضی معادلات شارداهی به ازای \(\varepsilon = 1 \) و \(A = 10 \) می‌باشد.

شکل ۵: تغییرات پلاسمایی به ازای \(\Omega = \frac{\varepsilon_0}{\rho_0} \) و \(\varepsilon_0 = \frac{\rho_0}{\rho} \).
در این شکل پارامتر $A = 3$ و $\Omega = 0.8$ انتخاب شده است. نمودار نقطه چین تحول زمانی انساس پلاسمابه خلاً در حضور میدان الکترومغناطیسی را نشان می‌دهد که در آن نفش ذرات محسوس منظر شده است. نمودار با خط ممتد نیز نشان دهنده همان فاصله‌ای‌امان‌تشابه است. همانطور که ملاحظه می‌شود سرعت حرکت لبه پلاسمایافته‌اما سرعت جبهه موج کاهش می‌یابد.

مقایسه نتایج نشان می‌دهد با تأثیر ذرات محسوس در فاصله‌های افزایش یافته است اما دفع جوی است سرعت جبهه موج کاهش می‌یابد.

تغییر مشخصه انساس پلاسمابه دلیل حضور ذرات محسوس می‌تواند نشان بسیار مهمی در پدیده‌هایی که به برهم کنش امواج الکترومغناطیسی و پلاسمابهمبیند بزی کند.

مراجع

2- M. R. Rouhani, N. L. Tsintsadze, and D.D. Tskhakaya, Physics of Plasmas,

Vol. 6, No. 2, (1999)

3- H. Abbasi, M. R. Rouhani, and D.D. Tskhakaya, Physica Scripta,
