تعداد لگ مناسب در مدلسازی تغییر نگار نمایی

محسن محمدزاده: دانشگاه تربیت مدرس
پدیده واقعی: دانشگاه بیرجند

چکیده

یکی از مسائل مهم در تجزیه و تحلیل داده‌های فضایی، تعیین ساختار همبستگی داده‌ها است که معمولاً به وسیله تابع تغییر نگار صورت می‌پذیرد. برای برآورد مقدار مطلقه به تعادلی لگ تغییر نگار می‌گردد و در هر لگ مقدار تغییر نگار تجربی محاسبه و متقابلی مفاهیم از اندازه جهت مدل برآورد داده شده به تعادل لگ‌ها است. تعیین تعداد لگ مناسب برای برآورد مقدار یک تغییر نگار نماینده مورد بررسی قرار می‌گیرد و از ان برای مدلسازی تغییر نگار میزان برای همبستگی سال دریایی در شهرستان‌ها کشور استفاده می‌شود.

سپس با استفاده از آن میزان این به‌عنوان تعدادی از شهرستان‌ها تخمین زده می‌شود.

مقدمه

داده‌هایی که نوعاً بر حسب موقعیت قرار گرفته‌اند، در فضای مورد مطالعه همبسته باشد و این همبستگی تابعی از فاصله موقعیت آنها باشد، داده‌های فضایی نامیده می‌شوند. در آمار فضایی معمولاً میدان تصادفی R^d برای مدلسازی داده‌ها استفاده می‌شود که در آن مجموعه D یک مجموعه اندیس $\{Z(t), t \in D\}$ فضای اقلیدسی d بعنی $(d \geq 1)$ است. چنانچه برای هر متغیر صحیح m متغیر m تصادفی $\{Z(t), t \in D\}$ دارای توزیع تأمین گوستی باشد، میدان تصادفی $\{Z(t_1),...,Z(t_m)\}$ گوستی نامیده می‌شود.

اگر میانگین میدان تصادفی ثابت و به موقعیت می‌گردد یک بستگی نداشته باشد، می‌خواهیم $E[Z(t)] = \mu$, و واریانسعبارت به صورت h فقط ثابتی از $Z(t)-Z(t+h)$ به صورت

$$\gamma \operatorname{Var}(Z(t)-Z(t+h)) = 2$$

باشد، میدان تصادفی مانند ذاتی نامیده می‌شود. تابع γ که ساختار همبستگی داده‌های فضایی را تعیین می‌کند تغییر نگار γ می‌نامند. بعلاوه اگر برای هر h کورواریانس γ تمایل به ثابتی از h باشد، میان $C(h)=\operatorname{Cov}(Z(t),Z(t+h))$ تصادفی را مانند مرتبه دوم گویند و تابع $Z(t)$ که ساختار همبستگی را در h $-\text{Intrinsic Stationary} \quad \text{2-Variogram}$
میان تصادفی ماتای مرتب دوم مشخص می‌کنند، هم تغییرنگار
1
می‌نامند. چنان‌چه هر یک از نوارهای
C(h)
فقط تابعی از انداره
h
به جهت آن در ناحیه ناشتا به‌دست می‌آید، میان تصادفی را همسان‌گردی
1
می‌نامند. [1] نشان داده (۵) \(h \) باید واجد شرایط
\(R \)
باشد. یعنی برای هر تعداد متناهی
\{ t_i : i = 1, ..., m \}
و اعداد حقیقی
\{ a_i : i = 1, ..., m \}
با شرط
\[\sum_{i=1}^{m} a_i \gamma(t_i - t_j) \leq 0 \]
در ناماسی
\[\sum_{i=1}^{m} \sum_{j=1}^{m} a_i a_j \gamma(t_i - t_j) \leq 0 \]
صدق کند. بعلاوه می‌توان نشان داد هم تغییرنگار
(\(C(\cdot) \) نیز یک تابع معنی مثبت است؛ یعنی برای هر تعداد
متناهی موقعیتهای
\{ t_i : i = 1, ..., m \}
داریم:
\[\sum_{i=1}^{m} \sum_{j=1}^{m} a_i a_j \gamma(t_i - t_j) \geq 0 \]
در عمل، معمولا تغییرنگار نامعلوم است و باید بر اساس داده‌های فضایی بر اورد شود. [ماترون] [2] بر اساس تجربی برای تغییرنگار بر اساس مشاهدات
\[2\gamma(h) = \frac{1}{N(h)} \sum_{(i,j) \in h} (z(t_i) - z(t_j))^2, h \in D \] 2
ارائه شده، که در آن
\[N(h) = \left\{ (t_i, t_j) : t_i - t_j = h; i, j = 1, ..., n \right\} \]
در جهت
h
و به فاصله
h
از یکدیگر قرار دارد و
\[\hat{\gamma}(h) = \frac{1}{N(h)} \sum_{(i,j) \in h} (z(t_i) - z(t_j))^2, h \in D \]
داده‌های فضایی، از جمله کریگینگ براي تخمین داده‌های فضایی به کار می‌روند، مورد استفاده قرار داده‌های فضایی، از جمله کریگینگ که برای تخمین داده‌های فضایی به کار می‌روند، مورد استفاده قرار داده‌های فضایی، از جمله کریگینگ که برای تخمین داده‌های فضایی به کار می‌روند، مورد استفاده قرار داده‌های فضایی، از جمله کریگینگ که برای تخمین داده‌های فضایی به کار می‌روند، مورد استفاده قرار داده‌های فضایی، از جمله کریگینگ که برای تخمین داده‌های فضایی به کار می‌روند، مورد استفاده قرار داده‌های فضایی، از جمله کریگینگ که برای تخمین داده‌های فضایی به کار می‌روند، مورد استفاده قرار داده‌های فضایی، از جمله کریگینگ که برای تخمین داده‌های فضایی به کار می‌روند، مورد استفاده قرار داده‌های فضایی، از جمله کریگینگ که برای تخمین داده‌های فضایی به کار می‌روند، مورد استفاده قرار داده‌های فضایی، از جمله کریگینگ که برای تخمین داده‌های فضایی به کار می‌روند، مورد استفاده قرار داده‌های فضایی، از جمله کریگینگ که برای تخمین داده‌های فضایی به کار می‌روند، مورد استفاده قرار داده‌های فضایی، از جمله کریگینگ که برای تخمین داده‌های فضایی به کار می‌روند، مورد استفاده قرار داده‌های فضایی، از جمله کریگینگ که برای تخمین داده‌های فضایی به کار می‌روند، مورد استفاده Covariogram
Isotropic
Conditional Negative Definite
Positive Definite
Range
Sill
Nugget Effect
1
2
3
4
5
6
7
8
Downloaded from jsci.khu.ac.ir at 14:18 IRDT on Sunday May 17th 2020
تعادل لگ مناسب در مدل‌سازی تغییر نگار نمایی

باشند، اما به دلیل از جمله خطا اندزه‌گیری، یا تغییرات شدید خصوصیت مورد بررسی در نقاط نزدیک به
هم، مقدار c_0 گاهی ملافت صفر است.
برای برآورد پارامتری تغییر نگار معمولا مدل‌های مختلفی از جمله مدل‌های خطی، کروی، نمایی، گوسی،
توانی و موجود مورد استفاده قرار می‌گیرند \([4]\). به عنوان مثال مدل شبه تغییر نگار نمایی در حالت همسانگرد
به این صورت است:

$$
\gamma(h) = c_0 + c_e \left(1 - \exp\left(-3\|h\|/a_e\right)\right), c_0 \geq 0, a_e \geq 0
$$

و در این c_0 اثر قطعه‌ای c_e دامنه شبه تغییر نگار، یعنی نقطه‌ای است که شبه تغییر نگار به

95% آنتانه c_e دامنه c_0 خود می‌رسد.
برازش مدل تغییر نگار تا حدی شیبی برازش یک مدل رگرسیونی است، با این تفاوت که در اینجا مقدار
تغییر نگار در لگ‌هایی مختلف مشاهده مستقل نیستند. برای برازش یک مدل تغییر نگار پارامتری می‌توان
همانند \([3]\) از روش‌های حداکثر مربعات معقولی، حداکثر مربعات موزونی یا درست‌میانگین استفاده کرد. برای این کار
فاصله‌ی مورد مطالعه به جنگی لگ تخمین می‌شود و با استفاده از زوج نقاطی که در فاصله‌ی لگ قرار می‌گیرند،
برآورده تجربی محاسبه می‌گردد، سپس یک مدل تغییر نگار معبر به آن برازش داده می‌شود. آنچه که تعداد
لگ‌ها در مقدار برآورده تغییر نگار دخلت دارد، در میزان دقت مدل برازش شده نیز تاثیر می‌گذارد؛ زیرا کم
بوندن تعداد لگ‌ها سبب کم شدن تعداد نقاط مورد استفاده در برازش و زیاد بودن آن سبب کاهش تعداد از رواج در
هر لگ می‌شود. در نتیجه برای هر مسأله لازم است تعداد لگ مناسب مشخص شود. در این مقاله به استفاده از
تکنیک شبیه‌سازی، مجموعه داده‌های فضایی همسانگرد با یک مدل تغییر نگار نمایی تولید و تعداد لگ مناسب برای
مدل‌سازی تغییر نگار مورد بررسی قرار می‌گیرد.

شبیه‌سازی
برای تولید داده‌های فضایی، به عنوان درگیر مقداری یک میدان تصادفی ماتریسی مرتبه $n \times m$ به

$\{Z(t); t \in D\}$، که می‌تواند به نقطه‌ای $t_i, ... , t_n$ در $C(\mathbb{R}^d)$ مختصات معین تابع $
\gamma(t) = \sum_{i=1}^n \left(\epsilon(t_i) + \frac{\epsilon(t_i - t_i)}{|t_i - t_i|}\right)$، $\epsilon(t_i)$ به ترتیب از تغییر نگار
لگ‌هایی یک محاسبه می‌شود که در این μ ماهیچه $L \times n$ واریانس مشخص شود. در این مقدار بردار داده‌های
فضایی تولید شده $\mathbf{Z} = (Z(t_1), ..., Z(t_n))'$، می‌توان مدل مناسب تغییر نگار به واردات واحد است. در این μ

$\mathbf{Z} = (Z(t_1), ..., Z(t_n))'$، بردار تصادفی ϵ گوسی اختیار شود، داده‌های فضایی تولید شده نیز از یک میدان تصادفی گوسی خواهند بود.

\[1\] Lags
باستفاده از این روش، یک مجموعه داده فضایی بر یک شبکه منظم 12×16 یک‌تایی در مربوط به اضلاع 500 واحد و بر اساس محاسبه تغییراتگر نمایی (3) با پارامترهای $c = 0.1$ و $c_e = 0.15$ تولید شده و برای تعداد نوع مقدار k بین 10 تا 35 مدل تغییراتگر نمایی به روش حداکثر مربعات مزون [6] برای داده شده است. این عمل را برای $m=1000$ بار تکرار کردهای و برای هر یک از مقادیر k جذر میانگین انگرال

$$\gamma_{RMISE} = \sqrt{\frac{1}{m} \sum_{j=1}^{m} \left(\frac{2.5}{r} - 2.5(r) \right)^2 dr}$$

محاسبه شده است، که در آن (\cdot) مدل برآمدش شده در ϵ امین تکرار است. این می معیار ناشناگر میزان کوئی تغییراتگرها برآمدش شده است و مقدار بهره k با کمیته کردن (4) به دست می‌آید. لازم به ذکر است که محاسبات اولیه برای تعیین تعداد لگ مناسب بیانگر أن بود که تعداد لگ بهره کمتر از 10 و بیشتر از 35 نیست، از این رو بررسی مقدار بهره k در فاصله 10 تا 35 انجام گرفت.

پایگاه داده‌هایی کوتاه‌سنجی با پرداختهای در محیط مکان‌گیری R و به کمک توابع GeoR تولید داده‌هایی کوتاه‌سنجی با پرداختهای در محیط مکان‌گیری R و به کمک توابع GeoR. تولید داده‌هایی کوتاه‌سنجی با پرداختهای در محیط مکان‌گیری R و به کمک توابع GeoR.

<table>
<thead>
<tr>
<th>k</th>
<th>RMISE</th>
<th>$m=1000$ RMISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>0.739/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>17</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>18</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>19</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>20</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>21</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>22</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>23</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>24</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>25</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>26</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>27</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>28</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>29</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>30</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>31</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>32</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>33</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>34</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>35</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>36</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>37</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>38</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>39</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>40</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>41</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>42</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>43</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>44</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>45</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
<tr>
<td>46</td>
<td>0.743/1.6</td>
<td>0.743/1.6</td>
</tr>
</tbody>
</table>

مثال کاربردی

گاهی در علوم پزشکی و به خصوص دردهای گیاهانی جنگل‌گزاری با داده‌های فضایی روی‌وریم که لازم است در تجزیه و تحلیل اماسی ساختار همبستگی فضایی آنها نیز منظور قرار گیرد. به عنوان مثال میزان بروز یک
بیماری‌یا میزان مرگ و میر ناشی از یک بیماری، در مناطق مختلف جغرافیایی، با در شهرستان‌های مختلف، یک مجموعه داده فضایی هستند. به طور کلی اغلب شاخه‌ها با میزان‌های بهداشتی مناطق مختلف می‌تواند مصداقی از داده‌های فضایی باشد. یکی از کارهایی که از استفاده از تحلیل فضایی می‌توان انجام داد، تخمین فضایی میزان بیماری است. با توجه به همبستگی فضایی این گونه داده‌ها، تعیین ساختار همبستگی آنها از طریق تابع تغییرنگار اولین مرحله تجزیه و تحلیل آنها به شمار می‌آید.

در این بخش ساختار همبستگی فضایی دو مجموعه داده، شامل میزان بروز (درصد شیوع) بیماری سل روبی شهرستان‌های کشور، در سال‌های ۱۳۷۷ و ۱۳۷۸ از طریق تغییرنگار برآورد می‌شود. هر یک از مجموعه i داده‌ها با $Z(t_i)....Z(t_n)}$ نشان داده می‌شود که در آن $n=262$ تعداد شهرستان‌های کشور، $Z(t_i)$ طول و عرض جغرافیایی مرکز شهرستانi آم و ($Z(t)$. میزان بروز بیماری در شهرستان آم در سال موردنظر است که از تفکیم تعداد موارد بیماری ثبت شده در طی یک سال بر جمعیت شهرستان آم در وسط همین سال به دست آمده است. این داده‌ها توسط اداره كل مدارز به بیماری‌های وزارت بهداشت، درمان و آموزش پزشکی، ثبت و جمع‌آوری شده است.

چون تابع تغییرنگار براي یک میان تصادفی مانای ذاتی تعیین می‌شود، ابتدا ماتریس داده‌ها مورد بررسی قرار می‌گیرد. به طور کلی وجود برقرار فضایی در داده‌ها، لازم است این روند از داده‌ها حذف و بر اساس داده‌های بدون روند شده تغییرنگار برآورد شود. روند داده‌ها را می‌توان به صورت یک چندجمله‌ای درجه دو برحسب موقعیتهای $t_i = \langle x_i, y_i \rangle$ بررسی کرد.

$$\mu(t_i) = a_0 + a_1 x_i + a_2 y_i + a_3 x_i^2 + a_4 y_i^2 + a_5 x_i y_i$$

در نظر گرفته در این صورت داده‌های بدون روند شده به صورت

$$R(t_i) = z(t_i) - \mu(t_i)$$
حالت می‌شود. با توجه به این که

\[\text{Var}(R(t_i) - R(t_i + h)) = \text{Var}(Z(t_i) - Z(t_i + h)) \]

است، می‌توان تغییرنگار داده‌های اصلی را بر اساس داده‌های بدون روند شده برآورد نمود.

برای هریک از مجموعه داده‌های بدون روند شده حاصل از میزان بروز بیماری سل در سال‌های ۱۳۷۷ و ۱۳۷۸، تغییرنگار تجربی در ۱۸ لگ محاسبه گردید، سپس به روش حداقل مربعات مدل تغییرنگار نمایی به آنها براش شده است. جدول ۲ برآورد پارامترها و حداقل مجموعه مربعات موزون (MWSS) را برای هریک از مجموعه داده‌های سال ۱۳۷۷ و ۱۳۷۸ به دست آمده است. \(c_0 \neq 0 \) نشان می‌دهد.

جدول ۲- برآورد پارامترهای مدل تغییرنگار نمایی

<table>
<thead>
<tr>
<th>سال</th>
<th>(\hat{c}_0)</th>
<th>(\hat{c}_r)</th>
<th>MWSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۳۷۷</td>
<td>۱/۱۴</td>
<td>۱/۱۲</td>
<td>۱/۱۴</td>
</tr>
<tr>
<td>۱۳۷۸</td>
<td>۱/۱۸</td>
<td>۱/۱۸</td>
<td>۱/۱۸</td>
</tr>
</tbody>
</table>

در حالت \(0 = c_0 \)، اثر قطعه‌ای مقدار ثابت صفر در نظر گرفته شده و مقدار آن برآورد نشده است و در حالت دیگر اثر قطعه‌ای بیش‌تر می‌باشد و در برآورد شده است. در شکل‌های ۲ و ۳ نقاط دهنده تغییرنگار تجربی هستند و مدل برآورد شده، با فرض \(0 = c_0 \)، با نقاط‌های مدل برآورد شده، با فرض \(c_0 \neq 0 \) با خط‌های نمایش داده شده است.

چنانکه ملاحظه می‌شود حداقل مجموعه مربعات موزون در هر دو مجموعه داده برای حالت \(0 = c_0 \) کمتر از \(c_0 \neq 0 \) است. بنابراین مدل براش شده تحت \(0 = c_0 \) به داده‌ها بهتر براش می‌شود، به عبارت دیگر اثر قطعه‌ای تغییرنگار برای این دو مجموعه داده مخالف صفر است.

مذلهای حاصل برای تغییرنگار (با اثر قطعه‌ای) برای تخمین میزان بیماری به روش کریگینگ[۳۴] در شهرستان K اطلاعی از میزان بیماری آنها در دسترس نبود، مورد استفاده قرار گرفت. جدول ۳ به ترتیب، نام شهرستان‌ها، طول و عرض مرکز شهرستان‌ها، تخمین میزان بروز بیماری سل ریوی (بر حسب ۱۰۰۰۰ نفر) و انحراف معیار آنها را برای سال‌های ۱۳۷۷ و ۱۳۷۸ نشان می‌دهد.
بحث و پیشنهاد

برای انتخاب یک مدل تغییر‌گذار نیازمند یک مدل مدل‌های مختلف را با تعداد لگ ثابت برازش داد و با استفاده از معیار مجموع مربعات موزون بالا یا پایین‌تر از میان آنها بهترین مدل را انتخاب کرد. اما به دلیل آن که با افزایش تعداد لگ‌ها مجموع مربعات موزون بالا یا پایین‌تر از میان آنها افزایش می‌یابد، به کمک این معیار حتی برای یک مجموعه داده خاص، نمی‌توان تعداد لگ مناسب را تشخیص داد.

برای انتخاب تعداد لگ مناسب، اغلب صاحب‌نظران تجزیه و تحلیل داده‌های فضایی فقط به توصیه‌های کلی اکتفا کرده‌اند. از جمله می‌توان به اشاره کرد که برای بیشتر این مسائل، در هر لگ حداکثر ۲۰ زوج داده باید داشته باشند. بنابراین تعداد لگ‌ها باید به‌طور بیشتری انتخاب شود که بیشتر این گونه‌ای انتخاب کننده باید در این شرایط کننده نسیم کنم. کری (۱۳) معتقد است که طول لگ‌ها باید از قدر کوچک باید که ساختار هسته‌ای را با وجود بیشتری نشان دهد و از طرف دیگر باید به قدر کافی بزرگ باشد تا برآورده‌گر تغییر‌گذار تجربی پایدار شود. ویستر و
دولت» [۹] معاون کمی از بودن تعداد لگ‌ها را بیان و تکذیب می‌کند که مقدار معادل آن به تعداد و موقعیت داده‌ها و شکل تغییرگزار بستگی دارد و میزان زوج داده‌ها را به عنوان یک مقدار اولیه برای طول لگ پیشنهاد می‌کند. با توجه به فقدان قادعه، با نظریه‌ای کلی برای تعداد لگ‌هایین، مطالعه حاضر صورت گرفت. در این مطالعه حجم نمونه تقريبا برای تعداد داده‌های مربوط به میزان برز بیماری سل رئی در شهرستان‌های ایران قرار داده شد تا بتوان نتیجه حاصل از شیب‌سازی را در تجزیه و تحلیل فضایی این را به کار گرفت. از این رو استفاده از نتیجه این مطالعه در تجزیه و تحلیل داده‌ها کاربردی را ایجاد می‌سازد که مدل بهتری به تغییرگزار داده‌ها براعظه و تخمین‌های بهتری دیسرت. در عین حال، مطالعه‌ای بررسی تاثیر حجم نمونه در تعداد لگ‌هایین ضروری به نظر می‌رسد. معمولاً محققان و تحلیل‌گران داده‌های فضایی طول لگ‌ها را یکسان می‌گیرند. این مرجع مستند تعداد زوج مشاهدات در لگ‌ها متقابل بوده و میزان دقت پراودهایی حاصل در هر لگ مختلف باشد. اگر طول لگ‌ها یکسانی باشند انتخاب شوند که تعداد زوج مشاهدات در آنها حتی امکان یکسان باشد می‌توان در حضور به این نقصی فائق آمد.

جدول ۳- تخمین فضایی میزان برز بیماری سل رئی در ۲۴ شهرستان
این مطالعه با فرض همستگرد بودن داده‌ها صورت گرفته است. لذا برای حالت ناهستگردگی، که لازم است یک تغییر نگار جهتی برای تعیین ساختار همبستگی داده‌ها بکار گرفته شود، تعیین تعداد لک بهبینه مسئله‌ای نیگر است.

مراجع