اندازه مکان، اندازه مقياس و مرتب سازی توزیع‌های یک متغیره

عين اله پاشا: دانشگاه تربیت معلم تهران
عادل فاطمی: دانشگاه آزاد اسلامی واحد علوم تحقیقات

چکیده
در این مقاله مفهوم اندازه مکان و مقياس و تعاریف مربوط به مرتب‌سازی جزئی برای مقایسه توزیع‌ها ارائه و بررسی می‌شود و نیز با استفاده از تحلیل‌های تک‌پایه، توزیع‌های تصادفی و پراکندگی ارائه می‌شوند. و نهایتاً می‌شود که اندازه‌های شناخته‌ای مانند میانگین و انحراف معیار به ترتیب اندازه‌های مکان و مقياس این مسئله تابعی از آن‌روپی توزیع‌ها را ارائه می‌کنیم که اندازه مقياس و است و بله این خود ارتباطی جالب میان آن‌روپی و واریانس توزیع‌های یک متغیره است.

مقدمه
در روابط مرتب‌سازی، عموماً مجموعه‌ای از توابع مانند U و در نظر می‌گیریم به قسمی که به ازای هر U متعلق به یک توزیع را انتخاب می‌نماییم. مرتب‌سازی بر اساس U این‌گونه تعریف Eu(X), U و یا مورد نظر توزیع را انتخاب می‌گردد. می‌شود این تعریف Eu(X), U انت‌گونه تعریف

\[X \leq_u Y \iff \text{Eu}(X) \leq \text{Eu}(Y) \quad \forall u \in U \]

\[
(3-1)
\]

می‌تواند مجموعه‌ای از توابع مطلق باشد. U

تعریف و نمادها

ما توزیع تجمعی Ra اکیداً صعودی می‌گوییم هرگاه روی مجموعه \(\{1, 2, ..., n\}\) نسخه \(F(x) = x < F(x) \leq F(x+1)\) باشد. در این بررسی ما تنها متغیرهای تصادفی مطلقاً پیوسته و تابع توزیع‌های اکیداً صعودی را بررسی می‌کنیم و منظور از یک مدل، مجموعه‌ای از تابع توزیع‌های است.

\[
S(y_1, y_2, ..., y_n, y_{n+1}, ..., y_n) = (\text{Ba همان ترتیب}) \quad \forall (1, 2, ..., n) \in \mathbb{N}
\]

را برای تغییر علامت‌ها تعریف می‌کنیم، مثلاً گر \(n = 3\) آنگاه \(F = (3, 2, 1, 1, 2, 1, 1, 2, 1)\).

همچنین \(S(3, 1, 1, 2, 1)\)宣传

حال فرض کنیم \(f\) تابعی حقیقی باشد که روی زیر مجموعه‌ای از \(\mathbb{R}\) مانند \(I\) تعریف شده، آنگاه

\[
S(f) = \sup S[f(x_1), f(x_2), ..., f(x_n)]
\]
درحقیقت تابع $f(x)$ تعداد دفعاتی را می‌شمارد که $f(x)$ها را قطع می‌کند.

مثال 2.1: دو عدد a و b در $[0, 1]$ انتخاب شوند. در $[0, b]$ $f(x)$، و حال اگر برای $0.5 \leq x \leq 1$ $f(x) = \chi^+$ آنگاه $S(f) = \sum_{n=0}^{\infty} \frac{1}{2^n}$. دامنه $[0, 1]$ واضح است که اگر f و g هم‌دیگر را که f مربوط به f و g هم‌دیگر را k گوییم که توابع f و g هم‌دیگر را را قطع می‌کند، $S(f-g) = k$, $k = 0, 1, 2, ...$

تعیین 2.2: تابع f را محدود مربوط به k گوییم هر چه به ازای x در I داشته باشیم:

$$f(x) \leq (\geq),$$

و محدود مربوط به گوییم هر چه به ازای $x_{1}, x_{2}, x_{3}, \ldots, x_{k+1}$ در I داشته باشیم:

$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_{k+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1 & x_2 & \cdots & \cdots & x_{k+1} \\ f(x_1) & f(x_2) & \cdots & \cdots & f(x_{k+1}) \end{vmatrix} \geq (\leq). \tag{1.2}$$

$\begin{eqnarray*}
f(x) = f(x; F_1, F_2) = F_2^{-1}(F_1(x)), & x \in S_{F_1} \\
\Delta(x) = R(x) - x = F_2^{-1}(F_1(x)) - x, & x \in S_{F_1} \\
\Delta^*(x) = R^*(x) - x = F_2^{-1}(F_1(x)) - x, & x \in S_{F_{1^*}} \\
r(x) = r(x; F_1, F_2) = f_1(x) / f_2(F_2(F_1(x))), & x \in S_{F_1} \end{eqnarray*}$

که به ترتیب چگالی توزیع‌های F_1 و F_2 هستند. ثابت $R(x)$، ثابت جالی است که به ترتیب توزیع‌های F_1 و F_2 دارای توابع $R(x)$ و $R(x)$ که مطالعات زیادی بر اساس آن صورت گرفته است. اگر X دارای توزیع F_1 باشد، آنگاه $R(x)$ دارای F_1 دارای توزیع $\lambda = 1$ باشد، آنگاه $R(x)$ ثابت خطیر است که λ اگر توزیعی نمایی با 1 باشد، آنگاه $R(x)$ خواهد گرفت. اگر F_1 توزیعی نمایی با 1 باشد، آنگاه $R(x)$
مقدار زیروست: \[r(x) = \frac{f'(x)}{f(x)} - \frac{F'(R(x))}{f'(R(x))} \]
نوع (1-10) را مطالعه کنیم. برای این منظور مجموعه توابع زیر را در نظر بگیرید:
\[C_1 = \{ u \mid \text{تابعی صعودی و پیوسته} \} \]
\[C_2 = \{ \max (\cdot , t) : t \in R \} \]
\[C_3 = \{ \min (\cdot , t) : t \in R \} \]

\[F_1 \leq F_2 \iff F_1 \leq_c F_2 \]
\[F_1 \leq_c F_2 \]

برهان: فرض کنیم که \(F_1 \) و \(F_2 \) در این صورت
\[F_1 \leq_0 F_2 \Rightarrow \Delta(x) = F_2^{-1}(F_1(x)) - x \geq 0 \Rightarrow F_2^{-1}(F_1(x)) \geq x \]
\[\Rightarrow F_2^{-1}(t) \geq F_1^{-1}(t) \ , \]
\[\Rightarrow u (F_2^{-1}(t)) \geq u (F_1^{-1}(t)) , \]
\[\Rightarrow \int_0^1 u(F_2^{-1}(t))dt \geq \int_0^1 u(F_1^{-1}(t))dt \]
\[\Rightarrow \int_{-\infty}^{\infty} u(z)dF_2(z) \geq \int_{-\infty}^{\infty} u(z)dF_1(z) \]
\[\Rightarrow Eu(Y) \geq Eu(X) \Rightarrow F_1 \leq c,F_2 \]

مرتب سازی های \(\leq_0 \) و \(\leq_c \) نیز حالت‌های خاصی از مرتب‌سازی \(\leq_0 \) هستند. برای جهت دیگر به «ستویان» 1972 مراجعه شود.

در یک بخش بعد خواهیم دید که مرتب‌سازی های \(\leq_0 \) و \(\leq_c \) تنها مکانی را انداده‌نامه‌سازی نمی‌گیرد، بلکه مقیاس را نیز می‌سنجد.

تعریف ۲-۱۲: تابع \(F \) یک انداده مکان در \(F \) است هرگاه
\[\psi : F \rightarrow R \text{ داشته باشیم:} \]

الف) برای هر \(F \in F \) و \(a,b \in R \)

\[\psi (a \times F + b) = a\psi (F) + b \]

ب) برای هر \(F \in F \) (اگر \(a \times F + b \) دارای توزیع باشد، انگاه توزیع \(aX + b \) دارای توزیع باشد، انگاه توزیع \(aX + b \) دارای توزیع باشد.

\[\psi (F) \leq \psi (F_1) \leq \psi (F_2) \] \(F \), \(F_1 \), \(F_2 \in F \) اگر \(a \times F + b \) دارای توزیع باشد، انگاه توزیع \(aX + b \) دارای توزیع باشد.

مثال ۲-۱۲: برای هر \(F \) دارای توزیع باشد، انگاه توزیع \(aX + b \) دارای توزیع باشد.

\[\mu(a \times F + b) = E(aX + b) = aE(X) + b = a\mu(F) + b \]

برای هر \(a \), \(b \) حتمی و هر \(F \) متعلق به دامی:

\[\mu(a \times F + b) = E(aX + b) = aE(X) + b = a\mu(F) + b \]
اندازه میقایس

هدف از این بخش پاسخ به این سوال است که گوشه می‌تواند تویزیع را از نظر میقایس مقایسه کرده.

(در اینجا بیشتر از این جوباره را در اینجا شرح می‌دهیم)

نتیجه ۱۴: تابع تویزیع‌های F₁ و F₂ را در میقایس مقایسه پندرگویی هر گاه یا یک محدود از مربوطه بیشتر باشد F₁ و F₂ در F مدل یک مدل مکانی میقایس مقایسه است و هر گاه F₁ با ازای F₂ می‌توان منجر به گرفتن F₁ و F₂ در F مدل مقایسه F₁ و F₂ که هرگاه F₁ گستردهتر نیست، هر گاه F₁ گستردهتره است.

F = {F(a + b): a,b ∈ R} به وضوح رابطه یک رابطه بازگشتی و متقارن است ما انتقالی نیست. مثل یک مدل مکانی مقایسی است، اما همه خوانده‌های مکنی مقایسه نزوما از این نوع نیستند. مربی سازی ≤ همان مربی‌محصولی پراکنده (disp) معرفی شده توسط "بیگل و لیمن" (1976) "می‌باشد. آنها چنین بیان کرده که در تابع، بیش از F₁ گسترده‌تر است، برای هر u,v, غیره که ۱ ≤ v ≤ u < v. داریم:

\[F_1^{-1}(v) - F_1^{-1}(u) \leq F_2^{-1}(v) - F_2^{-1}(u) \] (۱.۴)

(این رابطه به راحتی از محدود مربوطه یک بودن \(\Delta(x)\) (نتیجه می‌شود) یعنی فاصله بین هر دو چند که تویزیع از فاصله بین چندکه‌های متناظر نیست، بیشتر باشد. هم‌مانندی که قیمت نامساوی (۱-۴) صادق است یکی هستند.

حال بعضی از خواص ≤ را بررسی می‌کنیم.

\[F_1 \subseteq F_2 \Rightarrow \exists a : F(a) = F_1 (\pm a) \] (۱.۴)

برهان: تابع تویزیع‌های F₁ و F₂ را در نظر بگیرید به طوری که F₁ و F₂ در این F₁ ≤ F₂، F₁ ≤ F₂，
ساختار توابع
\[\Delta_r (x) = R_r (x) - x = F_r^{-1}(F_r(x)) - x \]
\[\Delta_l (x) = R_l (x) - x = F_l^{-1}(F_l(x)) - x \]
توابع ناسازی. به آرای هری به طوری که \(y_1 < y_2 \) و \(x_1 < x_2 \) \(x_1, x_2 \in S_1 \) و \(y_1, y_2 \in S_2 \) داریم:
\[\Delta_l (x_1) \leq \Delta_l (x_2) \Rightarrow R_l (x_1) - x_1 \leq R_l (x_2) - x_2 \]
\[\Delta_r (y_1) \leq \Delta_r (y_2) \Rightarrow R_r (y_1) - y_1 \leq R_r (y_2) - y_2 \]

حال را چنین تشکیل می‌دهیم:
\[R_r (x) = R_r (R_r(x)) = F_r^{-1}(F_r(F_r(x))) = F_r^{-1}(F_r(x)) \]
در این ساختار به آرای هری به توجه به دو ناسازی دقیقی که به نام آماده داریم:
\[R_r(x_1) - R_r(x_2) = R_r(R_r(x_1)) - R_r(R_r(x_2)) \geq R_r(x_1) - R_r(x_2) \geq x_1 - x_2 \]
\[\Delta (x) = (F_r^{-1}(F_l(x))) - x \]

تابع ناسازی است به معنی:
\[\Delta_l (x) = R_l (x) - x \]

صعودی است اگر و تنها اگر
\[\Delta^* (x) = F_l^{-1}(F_r(x)) - x = - \Delta(F_l^{-1}(F_r(x))) \]

نمونه‌بندی:
\[F_1 \approx F_2 \iff F_1 \leq F_2 \& F_2 \leq F_1 \]
\[\iff \exists a \in R : \Delta(x) \equiv a \]
\[\iff F_r^{-1}(F_r(x)) - x = a \iff F_l^{-1}(F_l(x)) = a + x \]
\[\iff F_1(x) = F_2(a + x) \]

توجه داشته باشید:
\[S_1 \Delta(x) = a \in R \]
\[0 \leq a \]
\[\Delta(x) \leq a \]

به آسانی می‌توان دید که \(F_1 \& F_2 \) اگر و تنها اگر به آرای هری خطي موثر می‌باشد. خطا در این بررسی از این نظر به خاطر قطعه‌کردن. این برقرار است از و تنها اگر
\[F_r^{-1}(F_r(x)) = a \]
\[F_r^{-1}(F_r(x)) = a + x \]
\[F_r^{-1}(F_r(x)) \]

حال ما دو نوع دیگر از مرتبسازی می‌توانیم هری که به کمک هم‌یا تماشمیکی که از ضعیف‌تر بوده و برای استفاده ساده ترند.

زمانی که \(F_1 \& F_2 \) اگر و تنها اگر به مرتبسازی هری که به نظر هم‌یا از دست هم‌یا در دست نمی‌یابد.

همچنین می‌توانیم به مرتبسازی واریانس توزیع‌ها قوی‌تر است بیانی:
\[X \leq Y \Rightarrow \sigma_x^2 \leq \sigma_y^2 \]

t2

تعریف 4.3:
برای توزیع‌های \(F_1 \& F_2 \) می‌گوییم که
\[\Delta(x) \geq b ; \quad x > a \]
\(\Delta(x) \leq b ; \quad x < a, \)

اگر دارای گشتاورهای اول متناهی \(F_1 \) و \(F_2 \) باشد. خواهیم گفت \(\mu_{F_1}^* \text{ و } \mu_{F_2}^* \) مانند \(a \) باشد که

\[\Delta(x) \geq \mu_{F_1} - \mu_{F_2} ; \quad x > a, \]

\[\Delta(x) \leq \mu_{F_1} - \mu_{F_2} ; \quad x < a \]

(حالت \(x \) حالتی است از \(\mu_{F_1}^* \text{ و } \mu_{F_2}^* \) می‌تواند اینگونه نیز به‌کار رود:

\(S(F_1(\cdot) - F_2(\cdot + b)) = 1 \) \(b \in \mathbb{R} \). هرگاه \(F_1 \geq F_2 \) باشد، به طوری که

\[F_1 \text{ هم‌دینگر را دارا بوده و } F_1(\cdot + b) \text{ هم‌دینگر را دارای } F_1(\cdot) + \mu_{F_1} \text{ می‌گمیم. } \]

به علاوه، \(F_1 \text{ با } F_2 \) برقرار است، اما \(F_1 \leq F_2 \) دلیلی رو به چپ انتقال دهنده را در دو نقطه قطع خواهد کرد و حال اینکه در مرتب سازی \(F_2 \) گفته می‌شود که \(F_1 \) و \(F_2 \) را گرفته‌های از اندیشان انتقال دهنده هم‌دینگر را حداکثر در یک نقطه قطع می‌کنند.

\[\begin{align*}
F_1(x + \mu_{F_1}) \\
F_2(x + \mu_{F_2})
\end{align*} \]

\(x \) برقرار نیست

\(F_1 \leq F_2 \) (حرف) از نظر مقیاس قوی مقایسه‌پذیر باشد، اگر

\(F_1 \leq F_2 \) (حرف) از نظر مقیاس قوی مقایسه‌پذیر باشد، اگر

\[F_1(\cdot) \leq \text{disp } F_2(\cdot) \]

برهان: (حرف) جون \(F_1 \) \(\leq \) \(F_2 \) تابعی صعودی است، پس به ازاٍ‌های دریم:

\[X > (\Delta(x) \geq (x)) \Rightarrow \Delta(x) \leq (\Delta(x_0)) \]

باالخصوص برای \(x_0 \) و

\[x_0 = \Delta^* \mu_{F_1} - \mu_{F_2} \]
پس کافی است را برابر رهایت مقدار این فرض می‌کنیم:

\[F_i \leq \mu_{F_i} - \mu_{F_i}^* \]

اگر (ق) یک طرف این رابطه درصدت قبل ثانیه شد حال برای انتخاب طرف دیگر فرض می‌کنیم.

\[F_i \leq \mu_{F_i} - \mu_{F_i}^* \]

زاویه است و از تعیین \(F \) توزیع این مقدار می‌باشد، آنگاه \(F \) از اینجا نتیجه می‌شود که: تابع \(b = \mu_{F_i} - \mu_{F_i}^* \) و \(a = \Delta^*(\mu_{F_i} - \mu_{F_i}^*) \).

تعریف ۳-۴: تابع زیر را در نظر بگیریم:

\[S_i = \{ u : \mu u \leq \text{صعودی و محدب : } u \} \]

\[S_i = \{ u : \text{محدب : } u \} \]

به کمک قضیه ۳-۴ و به طور مشابه می‌توان نشان داد که:

\[F_i \leq c, F_i \leftrightarrow F_i \leq a, F_i \Rightarrow F_i \leq a, F_i \]

حال فرض کنیم \(F_i \) مجموعه انتخاب شده و \(\leq \) رابطه مرتباً می‌باشد، اندازه مقدار \(F_i \) را چنین تعریف می‌کنیم.

تعریف ۳-۴: تابع \(\psi : F \rightarrow R \)alf (برای هر داشته باشیم:)

\[\psi(a \times F + b) = \lambda \psi(F) \]

که \(- \leq \psi(F) \leq \psi(F) \)

قسمت زیری به این سوال پاسخ می‌دهد که چگونه می‌توان یک اندازه مقدار برای زمانی که از \(\leq \) استفاده می‌کنیم باشد. آنگاه \(\mu_{F_i} \) و \(\mu_{F_i}^* \) با امید متناسب \(X \) و \(Y \) توزیع‌های \(F_i \) و \(F_i^* \) را برابر می‌کنیم:

\[F_i \leq \mu_{F_i}, F_i \Rightarrow F_i(\mu_{F_i}) \leq s \psi(F_i(\mu_{F_i})) \]

\[\Rightarrow F_i(\mu_{F_i}) \leq s \psi(F_i(\mu_{F_i})) \]
برهان: فرض کنیم X دارای توزیع F1 و Y دارای توزیع F2 باشد به طوری که \(F_2 \leq F_1 \). سپس: \(F(X + \mu_{F_1}) \leq (\geq) F(Y + \mu_{F_2}) \)
با توجه به شکل 2-3 اگر \(t \geq t_0 \) آنگاه
\[
\text{E}\max(X - \mu_{F_1}, t) \leq \text{E}\max(Y - \mu_{F_2}, t)
\]
و وقتی \(t < t_0 \) داریم:
\[
\text{E}\max(X - \mu_{F_1}, t) = t - \text{E}\max(X - \mu_{F_1}, t) \leq t - \text{E}\max(Y - \mu_{F_2}, t) = \text{E}\max(Y - \mu_{F_2}, t)
\]
حال از رابطه (4-3) نتیجه می‌شود (نتیجه آنیلی از «استیویان» 1977) نتیجه می‌شود.

نتیجه 3-2: انحراف معیار \(\sigma_F = E[(X - \mu_F)^2] \) دید که شرط اول صادق است. شرط دوم نیز از قضیه قبل نتیجه می‌شود. اگر \(X \in F \) درماند مورد نظر با رابطه \(F \leq \), در نظر بگیریم انگاه به این هر \(F_1, F_2 \) باشد.

\[
\begin{align*}
F_1 \leq F_2 \Rightarrow F_1(\cdot + \mu_{F_1}) \leq F_2(\cdot + \mu_{F_1}) \\
F_1(\cdot + \mu_{F_1}) = (\cdot + \mu_{F_1}) \leq F_1(F(\cdot + \mu_{F_1})) \\
\Rightarrow \sigma_{F_1}^2 = E(X - \mu_{F_1})^2 \leq E(Y - \mu_{F_2})^2 = \sigma_{F_2}^2
\end{align*}
\]
از رابطه (4-4) و قضیه 4-2 نتیجه می‌شود که انحراف معیار یک انداده می‌تواند مورد \(\sigma_F \) نیز یک انداده می‌تواند باشد.

پس \(\sigma_F \) (یعنی \(\leq \) نیز یک انداده می‌تواند باشد.

\[
\forall a, b \in R, F \in F \quad \sigma_F(a \times F + b) = e^{H(aX + b)} = e^{\log E[H(X)]} = e^{\log|\log E[H(X)]|} = |\log E\sigma_F(F)
\]

اولا، اگر \(X \) دارای توزیع F باشد، آنگاه
\[
\begin{align*}
F \leq F \Rightarrow \Delta(\leq) \Rightarrow r(\leq) \Rightarrow f(F^{r'}(u)) \leq f(F^{r'}(u)) \\
\Rightarrow -\int_0^1 \log f(F^{r'}(u))du \leq t - \int_0^1 \log f(F^{r'}(u))du
\end{align*}
\]
\[1\text{-Stoyan}\]
\[
\begin{align*}
\log f(x) dF(x) \leq & \log f(x) dF'(x) \\
\Rightarrow & \quad H(F) \leq H(F') \iff \sigma(F) \leq \sigma(F')
\end{align*}
\]

Thank you and congratulations

