تأثیر تنش خشکی روی پروتئین آزاد، پروتئین کل، قند محلول و Sporobolus elongates پروتئین پروفایل در گیاه علفی رستاخیزی با توان تحمل خشکی زیاد

حمیرضا قاسمی‌مور. چهاربخش کیانیان
دانشگاه رازی کرمانشاه

چکیده

اسپوروپولوس الگونوس گونه‌ای با تحمل خشکی زیاد است که می‌تواند در کمبود آب تا خشکی کامل زندگی بماند. و وقتی مجدداً احیا شود فعالیت‌های جیژولوژیکی خود را از اغاز کند. در هر دوی بیشترین متصل به گیاه و جدا شده با استفاده از روش آزمایش قرمر خشک (1960) (Levitt) زندگی بودن سلولی ازادگیری شد. در خلال تنش خشکی میزان پروتئین آزاد، پروتئین کل، قند محلول و (SDS-PAGE) تعیین گردید. و با اعلان غیر رستاخیزی (S.pyramidalis) مقایسه شیدا به‌هشتی ما در آزمایش قندها با توری شیشه‌ای و شیشه‌ای شدن در سیب‌پوست الکترولیز داشت. افزایش اندازه پروتئین آزاد در گیاهان با توان تحمل خشکی در مقایسه با گیاه حساس با کاهش ارائه شد فلزی و نسبت داشت. پروتئین کل ابتدا با افزایش خشکی سیر صعودی داشت و سپس کاهش یافت. که ممکن است دلایل تغییر الگوی هموگلوبین در خلال تنش خشکی باشد. آنالیز (SDS-PAGE) نشان داد که ظهور همانگی جدید با افزایش خشکی شدن با تغییرات انزیمی و نوع قند‌ها که در خلال آن ایجاد می‌شود همانگی دارد.

مقدمه

حدود 39 گونه گیاهی علفی، توسط گروه‌های تحقیقاتی به سرپرستی پروفورگاف در جهان شناخته شده‌اند. این گیاهان قادرنده پس از خشک شدن کامل (مثل خشکی کافه مجردة پس از دو روز آب) 100 میلی‌متر یا بیشتر) فعالیت‌های حیاتی و متانولیکی خودرا از سرگردند و تمامی بیشتر گیاه‌ها در خشک‌شدن (به جز جلگ) مجدداً احیا و سپس شوند. و به فعالیت‌های عادی و فیزیولوژیک خود آدامه دهند. به همین دلیل این گیاهان را گیاهان باتوان تحمل خشکی زیاد با رستاخیزی می‌گویند. فراوانی این گونه در میان گیاهان که لیپمیها نسبت به دولی‌های یا بیشتر است و در خانواده گیاهان نشان داده‌های ملاح‌سالم از گیاهان غیر رستاخیزی پات شده است. گیاه رستاخیزی و گیاه معمولی ظاهراً تفاوت آشکاری ندارند، اما گیاهان معمولی در میزان 20% 5% از بین می‌روند در حالی که اغلب گیاهان رستاخیزی در میزان RWC 120% هم دیده‌اند.

1- orobolos Elongatus 2- Gaff 3- Revive 4- Poaceae
شرايط اقليمي آب و هوايي فلات ايران دربيصيرن نفقات كشوره نحوه است كه به مدت چندين ماه از سال فاقد بارندگي است. با توجه به خشکسالي هاي اخير و احتمال تداوم آن بايت اطيار نظر کار کشسان، بيايي در مراتع و مزارع مشكلات فراواني را ايجاد خواهد كرد. بحث یک برون بارش وکم آبی سبب فرسایش مراتع، پيشروي کوير، نابودي زميني هاي كشاورزی، مزارع و باغاز میشود و پوشش گياهيا را با مخاطرات روبرو كرده است و اين پديد خود به نتياحي تاثيرات منفي بسياري در شرايط زبست معيطي، اقتصادي و اجتماعي در پي دارد.

برگ هاي کاملاً خشک شده و جروکيده elongatus Buliform cells

ذاتي را شروع مي كنند. زندگي ماندن پافتهاي كاملاً خشک شده با ازمايش هاي ميكروسكوپي تاييد شده است که اين نقش نه به تراوایی غذا را ثابت مي كند. برخيو از غياهان رستاخيزي در طول تحمل خشکي كارولفیل خود را حفظ مي كنند و برخيو دیگر كارولفیل خود را از دست مي دهند. که گونه رستاخيزي مورد بررسي مي باشد.

گروه فاصله G6PD

سننر مجد کارولفیل در نور بالا به طور وسیع پس از آبیهي مجد در مريست پايه برگ انجام مي گيرد، ولي تنفس در مدت 300 دقیقه پس از آبديهي شروع مي شود. در مجموع زين سنينين 2-5 روز (Rehydration) طول مي كشد. اين غياح نسبت به خشکي برداريو پروپتولاسمي TD دارند. از تغییرات ظاهری که در اثر خشکي و از دست داند آب پديد مي آيد، لول شدن و پچ و تاب خوردن (Folding) و سبب در برگ ها، که اين حالات معمولاً مانع توجه استرس ميكانيكي مقرض بين ديواره سلولي و پلاسماسي مي شود و همچنين مانع اکسيد شدن نوري و متلاشي شدن درونی كليه ديواره هاي سلولي بيدت خشک شده مي شود. البته سلولي هاي آماسي در اين عمل نقش عمدي دارند.

از تغييرات فيزيولوژيي و بيوشيمايي تحريب غياي كارولفلاست و ميتوکنديري. کاهش فتوستيز و تنفس، تجييه احتمايي كارولفیل، هيدروفيل شدن نشاسته و پروتئيني هاي غير محلول در آب است. سطح پرولين آزاد در گونه رستاخيزی افرايش مي يابد. اما معمولاً اين افرايش تفاوت چندان محصولي در مقابله با گياه حساس به خشکي ندارد. بعضاً افرايش نسبت قدم به يون نيز مشاهده شده است که قبلي افرايش باهته به طور عمده ساکراز است و قدمايي راهين وز استاكليز نشک كميي دارند.[3].

افرايش معياني داري در اتصال گزيلوکان و پيكنج غير استريعفی در ديواره سلولي. در زمن اعمال تنست پديد مي آيي که درحالات آبديهي مجد سطح آن كاهش مي یابد. سطح سوكروز، اريبروتون و گلوكوزورانوزين با غليسول افرايش بيدا مي كند. همچنين فعاليت G6PD-4فسفات دهيدروژنаз هم به طور قابل توجهي افرايش SDS-PAGE. مييابد افرايش در ميزيان پروتينين و نيز سنتر پروتينين جديدا تانش داده است.[7].

1. Myrothamnus flabellifolia
2. Xerophyta villosa
3. Protoplasmic Drought Tolerance
4. Buliform cells
تأثیر تنش خشکی روی پرولین آزاد

در نتیجه اعمال تنش خشکی سیستم Aba که یک جز آن است وارد عمل می‌شود و می‌تواند سبب chaotropic فعالیت و تغییر نسبه برداری برای ایجاد قرار گرفت در غلظت‌های کم محلول‌های (کلرید نیترات) اثر پایدار کننده روی غشا دارند، و لی در هنگام دهیدراتات شدن گونه‌های حساس به خشکی، ممکن است غلظت این محلول‌ها افزایش یابد و به اندنج ای سیم شود که موجب از بین رفتن غشا و ساختار دو لایه‌ای آن گردد. [۱۰۰] اکنون، گروه‌های زیادی مشغول شناسایی زنده‌بومی مقاوم به خشکی هستندند، همانند زن ۲۴ و ۱۰۱ و-۱۱ Rab این تنش از بین رفته است Aba بیان شده است. [۱۶]

مواد و روشهای

پس از استریل کردن بدنه‌ها، کشته و تکثیرگیاه رستاخیزی S. elongatus و گیاه حساس به خشکی S. pyramidalis در شرایطی که اقلیت گونه‌های مخلوط‌گرفت. سپس نمونه‌هایی از شرایت کننده در انتقال رشد نهایی دارد و کلیه‌نشین و شاخص شدن در مقدار و کثیفیه شدن. شرایطی که در ۳۳ درجه سانتی‌گراد در روز و ۲۱ درجه در شب شدید رسوباتی در شرایط زمین باعث بود آماده برای ۴۵ روز بود ۸۹% شروع و تا ۸% کاهش یافته. طی این دوره استرس، نمونه برداری جهت سنجش قدر محول ریزوئین کل پرولین آزاد، آزمون زندگی بودن و استخراج پروتئین با Main انجام پذیرفت. SDBS-PAGE اندازه گیری شده محلول با روش اسید سولفوریک فنل مخلوط گرفت. که در این روش ۱/۰ غرم از پودر خشک در ۱۵ میلی لیتر اتانول مخلوط شد و به مدت یک هفته در یخچال نهایی داشت و هر روز به هم زده شد. پس از یک هفته به مدت یک میلی لیتر از نمونه به میلی لیتر کاهشی ترکیبات ضروری شد و نمی‌سازد با حلال خود رها گردید و سپس نمونه در ۸۵ نانو متر خون‌های شد. سنجش پروتئین کل با استفاده از روش فولن- لوری انجام شد. و به دلیل شهرت کافی آن و موجود بودن در منابع مختلف از نظر سئولفیک می‌شود.

برای منجش پرولین آزاد از روش Bates (۱۹۷۳) کمک گرفته شد. به‌دین ترتیب که به ۱/۰ گرم از یودر خشک برگ ۲۰ میلی لیتر از محلول سولفوسیلیک اسید (SSA) ۳۰% افزوده گردید، پس از ۴۸ ساعت با صافی شماره یک صاف شد و سپس یک میلی لیتر از محلول نمونه در لوله‌های آزمایش ریخته و به یک میلی لیتر مصرف نشده و یک میلی لیتر اسید استیک کلریک افزوده شد. لوله‌های آزمایش یک ساعت در بین گاز مرگ ۱۰۰ درجه سانتی‌گراد قرار داده شد تا زمانی که رنگ آجی شیتیت شد، پس از آن با‌افزایش لوله‌ها در آب به قرار گرفت (برای توقف واکنش)، به‌دنبال آن به یک میلی لیتر تولوئن افزوده شد، در
نتیجه وبحث

گونه S. elongatus (با توان تحلیل خشکی زیاد) و گونه حساس به خشکی S. pyramidalis در ۲۰ درصد آزمون زنده بودن محاسبه گردید. [۲] سپس از اندامهای گیری های درصد آزمون زنده بودن محاسبه گردید. [۲] RWC% به دست می‌آید. در این رابطه وزن برق تازم DW وزن برق پس از خشک شدن (دراتو) ۷۰ درجه سانتی گراد به ۷۸ تا ۷۵ ساعت می‌باشد.

نمودار ۰ درصد گفتگوی جهانی شیش‌های CaCl و NaCl در این حالت جدا شدن برق از گیاه علائم زنده بودن را نشان داد، که نتیجه به دست آمده تا یدی بود کارهایی که توسط گروه تحقیقاتی پروفسورگان صورت گرفته است. نتیجه‌ای که از این واکنش استفاده می‌شود این است که گروهی از سیگال‌ها و یا هورمون‌ها همچنین ABA از بخش‌های تحتانی (ریشه) ترش و آزاد شده و توان تحلیل خشکی‌ها در برق توان ایجاد جدایی به وسیله حساسیت صورت گرفته است. [۲] [۲] [۲]

میزان فقد محلول طبق شکل B در طی تحلیل خشکی در علت رستاخیزی نسبت به گونه حساس افزایش پیدا کرد. این فقد افزایش یافته سبب ایجاد حالات فاز شفاف (Viterous) در پروتوپلاسم بود از دست داده شده است، که می‌تواند از غشاها محافظت کند. همچنین با افزایش نسبت فقد به پون آمیزی ایجاد حالات سبیت (chaotropic)
تأثیر تنش خشکی روی پرولین آزاد...

حمیرقا قاسمی. جهانی‌خشت کیانیان

مربوط می‌شود، این افزایش باعث پایداری در طول تنش خشکی شده، فرصتی را ایجاد می کند تا محلول‌های

سازگاری بتوانند مواد افزایش یافته در دو فاز آغازین و تأخیری صورت می‌گیرد. در فاز اول، مجموعه ای از پروتئین‌های ضروری پایان حفاظتی اولیه را در برابر استرس خشکی داده و در فاز بعدی سطح ساکاریدها با می‌روید و با جور شدن و ارتباط با پروتئین‌ها موجب توسعه تحلیل خشکی می‌شود.

سطح پرولین طبق شکل C در طی تنش یا در نمونه مقاوم نسبت به نمونه حساس افزایش نسبی را نشان می‌دهد. با توجه به اینکه پرولین و دیگر آمینو اسیدها یا گیلین بی‌قراری در شرایط استرس بی‌این ذوب‌افزایی است که در ابتدای تنش، گونه رستاخیزی برای مقابله و تحمیل بی‌این فعالیتی و واکنش‌های متالوپروتئین خود را احتمالاً بالا می‌برد که در این‌میان آنزیم‌های متوناتولیمسکی و کاتالوپروتئین‌زایی می‌کنند. است فعالیت سلولی که این آنزیم‌ها می‌توانند سطح تنشاتش را در اثر هیدرولیز کاهش و میزان ساکارید ساکاروز را افزایش دهد و سطح گلز و فرکتور کاهش پیدا و احتمالاً به سری آنزیم‌های اسپری ساکاروز را در پروتئین‌می‌گردد. در داخل ارگان‌ها مترکم کند. پس از ۳۸\% RWC حالت به‌جوار پس از آب‌دهی در خود این کاره است. لذا از این رو سطح پرولین‌کل در پایین‌تر از این محدوده کاهش پیدا است [۱۰].

بررسی تغییرات در قطر و تعداد بندهای پروتئینی در SDS-PAGE، نشان داد که در گیلین رستاخیزی در مراحل اولیه تنش یا در بی‌این دو باند پپتید و دو باند کم رنگ شده، یک در گوشه شاهد بهبودی ناپدید شده است. In vivo بررسی انجام گرفته توسط دیگران دو فاز اصلی تغییرات در سطح پروتئین‌ر در زنده مانند در زنده ماندن خشکی کامل گیاه S. stapfianus. ۵۰\% RWC که احتمالاً فاز اصلی مهی این است [۱۵،۱۶].

بررسی انجام گرفته توسط دیگران دو فاز اصلی تغییرات در سطح پروتئین‌ر در زنده مانند در زنده ماندن خشکی کامل گیاه S. stapfianus. ۵۰\% RWC که احتمالاً فاز اصلی مهی این است [۱۵،۱۶].

آمیلاز، سرین تر اونس‌سپانژ، گلکورونیداز و زیر واحد پزرگ

Glycin betaine

RWC ۳۱۰۲

<table>
<thead>
<tr>
<th>M</th>
<th>S_1</th>
<th>S_{15}</th>
<th>S_{45}</th>
<th>T_1</th>
<th>T_{15}</th>
<th>T_{45}</th>
</tr>
</thead>
</table>

از نمونه‌های استاندارد \(T \) در مقایسه با شاهد \(S \) می‌توان به SDS-PAGE نشان دهنده تاثیر فیزیولوژیک روی پروتئین‌های آزمایشگاهی اشاره کرد.

(1) روز اول تنش با RWC 98\%.
(15) روز پانزدهم پس از تنش با RWC 58\%.
(45) تنش با RWC 8\%.
در...
منتخب
10. H. R. Ghasempuor, and et al. Growth Inhibitor...plant Growth Regulation 24; (1998), 79-83
14. P. C. Owen The Relation of Germination pf Wheat to ...Journal of Experimental Botany, 3(8), (1952), 188-203.