روش ساده و سریع برای نوارآبی بکم در فاز جامد تحت تابش میکروویو

محمدرضا بیگدلی، میرمحمدعلی نیکچه، سعید جعفری:

دانشگاه تربیت معلم

چکیده

نوارآبی بکم کتواکسیمها تحت تابش میکروویو در فاز جامد بررسی شد. شرایط واکنش سیل و محیط زیست دوست است و واکنش‌ها با پذیرش‌های خوب به طور انتخابی انجام شدند.

مقدمه

نوارآبی بکم تبدیل درون ملکولی کتواکسیمها به آمیدها مربوط است که در سال 1886 ابتدا بکم کشف و به نام آمید مشهور شد.[1] واکنش‌های کیفی بسیاری در انجام نوارآبی بکم مورد استفاده قرار گرفته‌اند.[2-9] بکمن در ابتدا فرض کرده که نوارآبی بکم ماده ویژه به طور فراوان با مهاجرت سنین اتفاق می‌افتد و آرایش فضایی نسبت زاده شده به اکسیمها اولیه بر اساس این فرض انجام شد. در سال 1971 می‌خواهند نشان داد که نوارآبی بکم صورت آنتی روی می‌دهد. نامبرده آرایش فضایی بنیل مونواکسیم را تغییر کرد و آن را با فسفر پنتاکلرید در اثر واکنش داد و مشاهده کرد که نوارآبی بکم صورت آنتی اتفاق می‌افتد.[10].

![شکل 1](https://example.com/fig1.png)

هر یک از واکنش‌های مورد استفاده در نوارآبی بکم مزایای و معایب خاصی جوه را دارند. بیشتر آنها گراندان ویا تهیه آنها مشکل است.[11],[12], بعضی دیگر خوردنگی شدید داردند و در دمای بالا واکنش می‌دهند.

تویل نایلون-6 از کارولیان دارای بزرگترین نمونه صنعتی شده نوارآبی بکم است. نوارآبی سیکل‌هگزانون اکسیم به کارولیان نیاز به سولفونیک اسید غلیظ دارد. به منظور حذف اسیدهای غلیظ لازم، کاتالیست‌های جامد اسیدی بسیاری به جای سولفونیک اسید مورد استفاده قرار گرفته‌اند.[14] واکنش‌ها این کاتالیست‌ها

81
در فاز گازی و در فاز مناسب به طور گسترده مطالعه شده است، لیکن بررسی این واکنش‌ها در فاز جامد مورد
توجه کمتری قرار گرفته است.

استفاده از سیده‌ای معده باعث ایجاد خوردنی در کاربرد بسیار بالا می‌شود. به علاوه مشکل خشک
سازی می‌خیزد و واکنش نیز در اندام وجود دارد. از این سیده‌ای بنا به شکل امکان‌پذیر است که به
همراه به دست آمده‌ها از محصول اصلی به دست می‌آید[۱۱،۱۲،۱۳]؛ لیکن این
و اکتشگر مربوط به یک ترکیب از دمای انبار خونی درد و باید واکنش در دمای بالا انجام شود.
در
نالها اخیر از زنون‌های نانو متابیل زنولیت و...[۱۹] [۲۰] [۲۱] در فاز گازی استفاده شده است و لی
زنولیت‌ها نیز در دمای بالا (C۳۰۰) کاراپی دارد[۲۳].

توجه به مسال زیست می‌خیزد و توسعه "شیمی سبز" باعث شده است که حفظ مواد اسیدی برای فعل
و ابزار و انجام از استفاده حلال‌های آم در سرلی‌ی نهایت جدید در واکنش‌های شیمیایی قرار گیرد. هدف از
این تحقیق بررسی واکنش نیز در راستای برنامه "شیمی سبز" است.

![شکل ۲]

بخش تجربی

تپه شده‌ای مربوط به استفاده از صفحات بالاستیکی پوشیده از
Merck با استفاده از شرکت سیست‌کالژ؛ شرکت Fluka
IR Hitachi ۱۰ هم‌شکسته است و نظر به استفاده از دستگاه HNMR با استفاده از دستگاه
و نقطه ذوب‌ها با دستگاه Stuart Scientific SMP1
بدون صحیح گزارش شده است.

کتاوکسیم (امپتی‌مول) و آلومینیم کلرید (به نسبت درج شده در جدول) در هوا به خوبی مخلوط
و با هم سایه‌ده. خروج بخار HCl در ضمن سایش مشاهده شد و مخلوط همیشه به دست آمد. مخلوط همیشه حاصل تحت
شدن. خروج بخار HCl تابش میکروهوی در مدت زمان و توان لاژید (جدول) قرار گرفت، در این حال بخار HCl زیادی در هنگام تابش
تولید شد (لاژید است که کلیه مراحل واکنش در زیر هود انجام شود). آلومینیم کلرید اضافی با آب سرد عمل شد و
محصول واکنش دوبار با کارفورم استخراج شد. پس از تبیخ حلال بلورهای حاصل در مخلوط آب و اتانول
متلبور گردید. نتایج به دست آمده از واکنش‌های متفاوت در جدول داد شده‌اند.
نتایج بررسی نوارایی کدنئکتودزیمها در حالت جامد با استفاده از آلومینیم کلرد خشک

<table>
<thead>
<tr>
<th>No</th>
<th>Oxime</th>
<th>AlCl₃</th>
<th>ρλυ (W)</th>
<th>tλυ (s)</th>
<th>Mp (°C)</th>
<th>mp (°C) reported</th>
<th>Yield (%)</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>3/1</td>
<td>400</td>
<td>120</td>
<td>107-110</td>
<td>109-111¹</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>4/1</td>
<td>400</td>
<td>100</td>
<td>132-135</td>
<td>133-136¹</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3/1</td>
<td>400</td>
<td>150</td>
<td>153-155</td>
<td>155-157¹</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>3/1</td>
<td>400</td>
<td>120</td>
<td>170-176</td>
<td>173-175¹</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2/1</td>
<td>400</td>
<td>120</td>
<td>69-71</td>
<td>72-75¹</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>3/1</td>
<td>400</td>
<td>60</td>
<td>Oil</td>
<td>---</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

بحث ونتیجه گیری

در این سنجش، قبیل خود در زمینه سنتر در حالت جامد[22]علیه مند به بررسی نوارایی کمک کتودزیمها در این شرایط شدید. در انجام آزمایشات ملایمی که شامل استفاده از AlCl₃ و میکرویو بود برای تبدیل کتودزیمها به همیشه مربوط به استفاده شد که بازده خوبی به دست آمد. تابش میکرویو به عنوان یک عامل مؤثر و سریع برای تبدیل در حال نگهداری جامد به کار رفت. برای به دست آوردن بهترین شرایط تابش میکرویوی (زمان و توان تابش) و همچنین بهترین نسبت آلومینیم کلرد به اکسیم، آزمایش‌های متعددی انجام شد. شرایط بهینه انجام واکنش‌ها در جدول آمده است. برای دریافت بهترین بازده، توان بهینه تابش 400 وات است. توالشی از بین رفت محصول و ماده اولیه و تولید یک جامد سیاه رنگ می‌شود. توان های بالا بهبود و بهره و مدیریت به دست آمده از روش حرارتی که دو محصول با نسبت‌های متفاوت

می‌باشد، تحت تابش میکرویو تحتاً یک محصول ناشی از مهارتهای گروه آنتی نسبت به OH بسته می‌اید. برای حاصل می‌شود:

\[ \text{CH₂CONH}_2 \text{Ph} + \text{PhCONHCH}_3 \rightarrow \frac{1}{4} \text{N₂} + \text{PhCONHCH}_3 \]


نتایج قابل توجهی به دست آمده از این تحقیق در فاز جامد را می‌توان در دو محور اساسی خلاصه کرد:
10. Meisenheimer, J. *Ber.* 54 (1921) 3206.