پتروپزشکی و زئوشیمی توده‌های نفوذی جنوب غرب یزد

زارعی سهیمی رضایی: دانشگاه لرستان
امینی صدرالدین: دانشگاه تربیت معلم تهران

چکیده

در جنوب غرب یزد سه توده گرانیت‌نویزی به هم‌سانی پتروپزشکی، کافی‌ایاد و آدریلندان رخخورده است. در پتروپزشکی شیرکوه با توجه به اینکه سازند نابلند(ترانس فوقانی) را قطع کرده وزئوشیمی کرنش بر روی آن قرار گرفته و به احتیاط زد، زئوشیمی است. به نظر می‌رسد اولین و مهم‌ترین مرحله ماده‌تامین باشد که در زئوراکا میانی(سهمی پرس) اتفاق افتاد است. از طرفی نگرفته‌های سنگ‌های آهکی کرنش در اطراف توده‌های نفوذی کافی‌ایاد و آدریلندان در اثر نفوذ شیرکوه و توده‌های نفوذی دیگری بسیار بزرگ شدند. بنابراین، پالیس که پتروپزشکی شیرکوه با توجه به اینکه سازند نابلند(ترانس فوقانی) را قطع کرده وزئوشیمی کرنش بر روی آن قرار گرفته و به احتیاط زد، زئوشیمی است. به نظر می‌رسد اولین و مهم‌ترین مرحله ماده‌تامین باشد که در زئوراکا میانی(سهمی پرس) اتفاق افتاد است. از طرفی نگرفته‌های سنگ‌های آهکی کرنش در اطراف حداکثر از کرنش نرمال جوانی بوده و شاید می‌تواند سنگ‌های باشند. این سنگ‌های کاکی‌های کوارتز، کوارتز، کربنات، آندالوزیت مینتیت و همانند از کاکی‌های فرعي عمدان و مقاذر،

\[Na_2O \cdot SiO_2, K_2O, Ti \cdot Sr, Nb, K, Ba, \]

در نقاط مختلف توده‌های نفوذی متغیرند و گونه‌نشانی از عنصر CaO، K_2O، SiO_2 در نقاط مختلف توده‌های نفوذی متغیرند و گونه‌نشانی از عنصر CaO، K_2O، SiO_2 در نقاط مختلف توده‌های نفوذی متغیرند و گونه‌نشانی از عنصر CaO، K_2O، SiO_2 در نقاط مختلف توده‌های نفوذی متغیرند و گونه‌نشانی از عنصر CaO، K_2O، SiO_2 در نقاط مختلف توده‌های نفوذی متغیرند و گونه‌نشانی از عنصر CaO، K_2O، SiO_2 در نقاط مختلف توده‌های نفوذی متغیرند و گونه‌نشانی از عنصر CaO، K_2O، SiO_2 در نقاط مختلف توده‌های نفوذی متغیرند و گونه‌نشانی از عنصر CaO، K_2O، SiO_2 در نقاط مختلف توده‌های نفوذی متغیرند و گونه‌نشانی از عنصر CaO، K_2O، SiO_2 در نقاط مختلف توده‌های نفوذی متغیرند و گونه‌نشانی از عنصر CaO، K_2O، SiO_2 در نقاط مختلف توده‌های نفوذی متغیرند و گونه‌نشانی از ع*n*...*س* \[\text{در منطقه قابل تهیه و استخراج است. از نظر پتانسیل اقتصادی کاناسیر مرمر، اسکارن، آهن، سنگ، سرب، روی و کاکی‌های غیرفلزی نگرفته‌های توده‌های نفوذی مشاهده می‌شود.}]*

1- موقعیت جغرافیایی و زمین‌شناسی

توده‌های نفوذی شیرکوه، کافی‌ایاد و آدریلندان در جنوب غرب یزد و در محدوده جغرافیایی 00° 35′ تا 00° 45′ طول شریک و 37° 32′ تا 37° 35′ عرض شمالی قرار گرفته‌اند(شکل 1). در شرق شیرکوه بیش از 1000 متر سنگ آهک و دولومیت بر روی گرانت‌ها دیده می‌شود که پرتگاه‌های گسلی و غیرگسلی فراوانی را به وجود اورده‌اند. در جنوب غرب تندروس اوری سازند سنگ‌ستان بسیار زئوراکا فوقانی به سر و بر رنگ قرمز از غواصی دیده می‌شود و در بخش جنوبی تندرو سازند سنگ‌های آهکی خاکستری رنگ سازند تندرو به چشمه می‌خورد. قلل مرتفع منطقه از سنگ‌های آهکی اریترولین داریدار سازند تندرو نوشیدنی شده که گسترش زیادی دارند. از
پدیده‌های مهم فرسایش در گرانيت‌های مورده بسیار پیدا نشده است. گرانیت‌های شیرکوه سازند نایبند را قطع کرده و آهن‌هایی کرنسه‌ها همراه با یک واحد مانند سنگی و کانگلویرائی(کرنسه تخت‌اش) به طور دگر شیب بر روی آن قرار گرفته است. گرانیت شیرکوه از نظر سنی از سازند نایبند جوانتر و از سازند گرانیت قدم‌تر است. سن مطلقی که بر اساس داده‌های ضایع‌متریک برای آن پیشنهاد شده 175±1 میلیون سال[1] به روش K-Ar و 165±10 میلیون سال[5] با استفاده از روش Rb-Sr نشان می‌دهد. سن توده‌های نفوذی کافی آب و آدریلندان با توجه به نگرگونی آهن‌هایی کرنسه و اسکارن‌سازی در آن‌ها بعد از کرنسه زیرین(شاید هم الیگو-میوسن) است. بنابراین می‌توان تشکیل گرانیت شیرکوه را به سه مراحل پسین نسبت داد و تووده‌های نفوذی کافی آب و آدریلندان را به فاز اولیه کوپنای بعدی مربوط دانست. این‌چه مسلم است که تکنیک نهداری در زمان‌های مختلف است. تعیین دقیق این موضوع مستلزم بررسی‌های دقیق سنجی ایزوتروپی بر روی اجزای مختلف گرانیت شیرکوه است.

شکل 1. موقعیت جغرافیایی توده‌های کرانتونوئیدی جنوب غرب یزد

 advertisers گرانیت شیرکوه

حد تامین توده گرانیت‌نیز توده شیرکوه با سن‌های آهنی جمال به صورت میلیونی است و در نقاط نیز کانی‌سازی مرسوم و اسکارن صورت گرفته است. به لحاظ تکنولوژیکی و بر اساس تکسپرسن‌های واحدی ساختاری، رسوبی ایرانی[۶] با توده شیرکوه، کافی آب و آدریلندان در زون ایرانی مکزیکی قرار گرفته‌اند، ولی زمان جایگزینی و نوع و رخداد تکنولوژیک مربوط به آن‌ها متفاوت بوده است، بدين گونه که باتولیت شیرکوه طی فاز
کوزه‌ای سه‌پیسی (ژوراسیک میانی) و توده‌های نفوذی کافی آباد و آدربلدنان بعد از کرتاسه زیرین جای‌گزین شدند. به طور کلی سنگ‌های کارانی بر اساس کلاسیک شیمیایی، کانی‌شناسی و خاصیت‌های تنک‌شناسی به انواع I، S و I، A، M (I، S) تقسیم می‌شوند. در منطقه این بررسی شده کارانی در را به دو نوع S و I، A سیری‌های ایلمنیت و S منبتیت نکه سیری ایلمنیت معادل نوع S و سیری منبتیت معادل نوع I، A کارانی، می‌توان تسمیه نمود که سیری ایلمنیت معادل نوع S از پروتوکلاسیک که به کارانی‌های رسوئی قطعی حاصل ذوب بخشی از مواد بوسته‌ای است که نسبت ایزوتوپی Sr نسبت 87Sr/86Sr آنها بیشتر از 0/71/0/71 است. کورنیت و کانی‌های اولیه (پلاکیت و کانی‌های سولفید) هستند. کارانی‌های نوع I دارای منشا ماگموپاکی که عالله به کانی‌های کورنیت، پلاکیت‌های کانی‌های هورنبلند و کانی‌های اولیه (پلاکیت و کانی‌های سولفید) نیز دارند. این نوع کارانی بیشتر با تولانیت هورنبلند بهبود داده می‌شود. نسبت ایزوتوپی Sr نسبت 87Sr/86Sr آنها از 0/70/8 کمتر است و عمدتاً باکانی‌هایی مثل مس، مولبدن، سرب، روی، طلا و نقره همراهند.

2- پتروگرافی و کانی‌شناسی

در گستره پلئوفیسیم جنوب غربی بخش می‌تواند که دانه ریز تا دانه درشت‌تر و در آنها هوازدگی شدید سطحی و تغییر رنگ ناشی از هوازدگی پیدا می‌شود. حضور بیشتر سنگ‌های بخشی و گرد به صورت لکه‌های تیره رنگ در این کارانی‌ها به وفور دیده می‌شود. جناغی که دایک‌های آسیبد و دولریتی در درون گرانبها و رگه‌هایی از نوع ایلیت – پتاسیت حاوی تورمالین هم می‌توان مشاهده کرد. توده‌های کوچک و لکانیکی به صورت گندله‌های دستی و رولیتی، گدازه‌ها و توده‌های تراکیتی و اندزیتی و ندرتاً اندزیتی بازالتی در همین با گرانبها و در محوریت گسل (بخصوص گسل دمچر – باتف با رود شمال غربی جنوب شرق) دیده می‌شود. بر اساس طبقه‌بندی سیستمایی و نمودار Q–P (123) سنگ‌های منطقه از نوع گرانب، آدامیت، گراندوپریت، تولانیت، کورنیت سینوب و کورنیت مولتانیت (شکل 2).

شکل 2 نمودار Q–P دیوین و نفوذات (1988) و سنگ‌های آذری منطقه بر روی آن

1- گرانبها 2- آدامیت (گرانبها کلاکو، اکانتن)
2- گرانبها 3- تولانیت
3- کورنیت‌های سیرین
4- کورنیت‌های قربانی
5- کورنیت‌های قربانی
6- کورنیت‌های قربانی
کاتی‌های اصلی سنجش‌ها شامل کوارتز، پلاژیوکلز (آلبیت، الیگوکلز و آندزین)، ارتزو و میکروبوتیت به مقدار خیلی کم موسکوتیت است. پلاژیوکلز‌ها ساختمانی منطقه‌ای نشان می‌دهند که بیان‌گر افت سریع شار و تغییرات ترمودینامیکی محیط تبلور است. [۹] [۱۰] [۱۱] نتایج مشابه کوه دریابی شیمیایی زون‌های مختلف پلاژیوکلز شده است؛ زیرا که زون‌های مکوس در بعضی از پلاژیوکلز‌های تازه موجود در (

tمومه ۱۸) در مقاطع نازک دو نسل پلاژیوکلز با گاهی نیز پیشتر دیده می‌شود. کاتی‌های فرعی موجود در سنگ‌ها ابتدا، زیرکن (اندازه در بوئینیت)، اسفنج، تورمالین، اسپینل (نوع هرسینتیت)، گازرنیت‌[۴] هماهنگ و مناسبی هستند. در گرانیتنوئیت شیروک ودربینیت، اندالوزیت و سپیلیت نیز وجود دارد در حالی که توده‌های نفوذی کافی برای آن ارتباطات را فاقد نمی‌کند. در اسکارن‌هایی که در مجاورت دو توده مورد اشاره تشکیل شده ایفیتوت، دیوبسید، گرونا (آنداریدین)، کلریت (شامارزیت)، سرپینیت (لیزرادین)، فلاربویت و زونیتیت دیده می‌شود. کاتی‌های مذکور در اسکارن‌ها توسط مطالعه مقاطع نازک و روش آزمایش‌گاهی X.R.D تعیین شده‌اند. عمدمتنین بافت های شناخته شده در سنگ‌های فوق پهناهی گر انولر، گراییک (گرانیتنیفت)، اربیکار، پرتوت، آنتی پرتوت و پورپورینتید. انتراسیون‌های معمول خصوصاً در رابطه با گرانیت‌ها عبارتند از سرپیلیتاسیون، سوسوریتاسیون، کلریتپلیت اسیون و سرپینیتاسیون، سرپینیتیتاسیون در حاله دگرگونی مجاری قابل روبت است. بررسی مقاطع نازک انکلاوهای موجود در گرانیت‌ها نشان می‌دهد که درون گرانیت به صورت لکه‌های سیاه رنگ دیده می‌شوند و داده‌ها تاکنون به روش گرانیتی‌های ناشناخته (دارودی هزارم به کوارتز، پلاژیوکلز و فلزساخت‌‌ها) ارتباط است که هم‌بری آنها با گرانیت حالت انتقالی را تایید می‌کند. این حالت می‌تواند اختلال‌های ثابت در همزار بودن انکلاو‌های مکوس با گرانیت‌ها باشد [۱]. علاوه بر این‌ها، انکلاوهای دیده شده است که بافت هورنفلسی دارند و ترکیب پازیکی را نشان می‌دهند [۵] البته انکلاوها می‌توانند رسته‌های باقیمانده از سنگ‌اولیه طی تحولات فرا مانورقومان باشند.

۳ - خصوصیات زنن شیمیایی

به منظور بررسی زنن شیمیایی و تعیین نوع گرانیت باژولیتی شیروکو و سایر توده‌های نفوذی، از میان نمونه‌های برداشت شده از ناحیه ۱۰۰ نمونه مناسب استخراج و بعد از آماده سازی، اکسیدهای عناصر اصلی (جدول ۱) و کمیات آن (جدول ۲) به روش X.R.D تعیین شده‌اند. [۱۴] نتایج نشان داده شده‌اند. در بررسی تعیین میکروترکیب شیمیایی در هاته دگرگونی‌ها در گرانیت‌های مجاری و تشخیص دقیق نوع کاتی که مورد تجزیه X.R.D قرار گرفته‌اند (جدول ۳). برای تعیین ترکیب شیمیایی دقیق کاتی‌ها در هاته دگرگونی مجاری و تغییرات ترکیب شیمیایی آنها، به میزان سنگ اسکارن‌های به کانادا ارسال شد و مورد تجزیه دقیق (میکروپراب) قرار گرفته‌اند (جدول ۴). درصد تغییرات در باژولیتی گرانیتی‌های شیروکو عبارت است از:

|
| FeO | Al2O3 | SiO2 |
| ۵۲/۲۵ تا ۶۲/۱۲ | ۷۴/۰۵ تا ۸۴/۰۸ | ۶۲/۵۵ تا ۶۵/۰۶ |
پتروлогی و زمین‌شناسی توده‌های نفوذی جنوب غرب یزد

از راجع به سه‌گانه، امینی صدرالدین

\[
\begin{align*}
K_2O & = \text{از} / 2 / 3 \text{ مولی} \\
CaO & = \text{از} / 1 / 2 \text{ مولی} \\
MgO & = \text{از} / 0 / 5 \text{ مولی} \\
P_2O_5 & = \text{از} / 0 / 1 \text{ مولی} \\
CaO & = \text{از} / 0 / 9 \text{ مولی}
\end{align*}
\]

مقدار بالایی این اکسید (B) در دیوریت (ب) و نیز تغییرات شدید (G) بیانگر جداشیب کاتیونی فرومیتین در بخش‌های به‌نامولی و بیلیوکلاز در بخش‌های فوقانی است که نتیجه تغییرات در توده نفوذی کافی‌اند به این ترتیب است:

\[
\begin{align*}
\text{MgO} & = \text{از} / 0 / 51 \text{ مولی} \\
\text{MgO} & = \text{از} / 0 / 52 \text{ مولی} \\
\text{Al}_2\text{O}_3 & = \text{از} / 0 / 62 \text{ مولی}
\end{align*}
\]

است. (جدول 1)

جدول 1. نتایج تجزیه شیمیایی کننده نموده از سه‌گانه مختلف توده‌های نفوذی جنوب غرب یزد

(شیرکوه، کافی‌اند و ادیرلدن) (الف) کافی‌اند، ب: کافی‌اند، ج: ادیرلدن

<table>
<thead>
<tr>
<th>محلول</th>
<th>FeO</th>
<th>FeO</th>
<th>NaO</th>
<th>MgO</th>
<th>TiO</th>
<th>P2O5</th>
<th>MnO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>0.01</td>
<td>0.21</td>
<td>0.22</td>
<td>0.51</td>
<td>0.06</td>
<td>0.11</td>
<td>0.11</td>
<td>0.22</td>
</tr>
<tr>
<td>B2</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>B3</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>B4</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>B5</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>B6</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>B7</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>B8</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>B9</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

جدول 2. نتایج تجزیه شیمیایی کننده نموده از سه‌گانه مختلف توده‌های نفوذی جنوب غرب یزد

(شیرکوه، کافی‌اند و ادیرلدن) (ب) کافی‌اند:

<table>
<thead>
<tr>
<th>محلول</th>
<th>SiO2</th>
<th>Al2O3</th>
<th>CaO</th>
<th>K2O</th>
<th>FeO</th>
<th>P2O5</th>
<th>TiO2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gk4</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Gk5</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Gk6</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Gk7</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Gk8</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Gk9</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Gk10</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Gk11</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Gk12</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Gk13</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Gk14</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Gk15</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Gk16</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Gk17</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>
جدول 2. نتایج تجزیه شیمیایی عناصر کمیاب سنگ‌های مکمل‌های:
الف: حروف ب: کافی آباد ج: اردبیلندان به روش XRF ارقام بر حسب پی ام هستند.

<table>
<thead>
<tr>
<th>شیمیایی</th>
<th>Sr</th>
<th>Rb</th>
<th>Ba</th>
<th>Zn</th>
<th>Ce</th>
<th>La</th>
<th>Zr</th>
<th>Cu</th>
<th>V</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>9</td>
<td>15</td>
<td>18</td>
<td>10</td>
<td>13</td>
<td>20</td>
<td>16</td>
<td>25</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>B2</td>
<td>100</td>
<td>140</td>
<td>168</td>
<td>70</td>
<td>70</td>
<td>130</td>
<td>50</td>
<td>50</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>B3</td>
<td>8</td>
<td>14</td>
<td>184</td>
<td>50</td>
<td>60</td>
<td>160</td>
<td>40</td>
<td>40</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>B4</td>
<td>120</td>
<td>180</td>
<td>210</td>
<td>60</td>
<td>60</td>
<td>180</td>
<td>40</td>
<td>40</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>B5</td>
<td>140</td>
<td>190</td>
<td>230</td>
<td>120</td>
<td>120</td>
<td>240</td>
<td>80</td>
<td>80</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>B6</td>
<td>160</td>
<td>200</td>
<td>260</td>
<td>160</td>
<td>160</td>
<td>280</td>
<td>120</td>
<td>120</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>B7</td>
<td>8</td>
<td>12</td>
<td>160</td>
<td>40</td>
<td>40</td>
<td>160</td>
<td>40</td>
<td>40</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>B8</td>
<td>120</td>
<td>180</td>
<td>220</td>
<td>60</td>
<td>60</td>
<td>220</td>
<td>60</td>
<td>60</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>A1</td>
<td>8</td>
<td>12</td>
<td>160</td>
<td>40</td>
<td>40</td>
<td>160</td>
<td>40</td>
<td>40</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>G1</td>
<td>20</td>
<td>32</td>
<td>36</td>
<td>22</td>
<td>22</td>
<td>36</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>G2</td>
<td>140</td>
<td>190</td>
<td>230</td>
<td>120</td>
<td>120</td>
<td>230</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
</tbody>
</table>

(الف)

<table>
<thead>
<tr>
<th>شیمیایی</th>
<th>Ze</th>
<th>Sr</th>
<th>U</th>
<th>Rb</th>
<th>Pb</th>
<th>Zn</th>
<th>Cu</th>
<th>Ni</th>
<th>Co</th>
<th>Cr</th>
<th>Y</th>
<th>Nd</th>
<th>Nb</th>
<th>Hf</th>
<th>Cl</th>
<th>Th</th>
<th>W</th>
<th>F</th>
<th>V</th>
<th>Cr</th>
<th>S</th>
<th>Ba</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>9</td>
<td>15</td>
<td>18</td>
<td>10</td>
<td>13</td>
<td>20</td>
<td>16</td>
<td>25</td>
<td>12</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>100</td>
<td>140</td>
<td>168</td>
<td>70</td>
<td>70</td>
<td>130</td>
<td>50</td>
<td>50</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>8</td>
<td>14</td>
<td>184</td>
<td>50</td>
<td>60</td>
<td>160</td>
<td>40</td>
<td>40</td>
<td>13</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>120</td>
<td>180</td>
<td>210</td>
<td>60</td>
<td>60</td>
<td>180</td>
<td>40</td>
<td>40</td>
<td>18</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>140</td>
<td>190</td>
<td>230</td>
<td>120</td>
<td>120</td>
<td>240</td>
<td>80</td>
<td>80</td>
<td>19</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>B6</td>
<td>160</td>
<td>200</td>
<td>260</td>
<td>160</td>
<td>160</td>
<td>280</td>
<td>120</td>
<td>120</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>B7</td>
<td>8</td>
<td>12</td>
<td>160</td>
<td>40</td>
<td>40</td>
<td>160</td>
<td>40</td>
<td>40</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>B8</td>
<td>120</td>
<td>180</td>
<td>220</td>
<td>60</td>
<td>60</td>
<td>220</td>
<td>60</td>
<td>60</td>
<td>22</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>8</td>
<td>12</td>
<td>160</td>
<td>40</td>
<td>40</td>
<td>160</td>
<td>40</td>
<td>40</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td>20</td>
<td>32</td>
<td>36</td>
<td>22</td>
<td>22</td>
<td>36</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>140</td>
<td>190</td>
<td>230</td>
<td>120</td>
<td>120</td>
<td>230</td>
<td>120</td>
</tr>
</tbody>
</table>

(ب)
جدول ۲: نتایج تجزیه میکروسکوپی بر روی نمونه سنگ اسکارنبی جنوب غرب یزد

نام نقش کائنات فوک بر اساس مختصاتی و مخلوطی کانونهای بر ارتفاعهای بر نسبت ۱۲ کیلوسیلو، برای یکپارچه نسبت ۴ کیلوسیلو بست محتوی است.

<table>
<thead>
<tr>
<th>کانی</th>
<th>آلیاژ</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>MgO</th>
<th>CaO</th>
<th>Cr₂O₃</th>
<th>MnO</th>
<th>Fe₂O₃</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>ف</th>
<th>Cl</th>
<th>کل</th>
</tr>
</thead>
<tbody>
<tr>
<td>ترمولیت</td>
<td>gk₁₂</td>
<td></td>
<td></td>
<td>۲۵/۱۲</td>
<td>۲۲/۱۱</td>
<td>۲۳/۲۲</td>
<td>۲۴/۱۵</td>
<td>۲۶/۱۸</td>
<td>۲۴/۱۷</td>
<td>۲۴/۱۸</td>
<td>۲۵/۱۸</td>
<td></td>
<td></td>
<td>۸۹/۱۹</td>
</tr>
<tr>
<td>آکتولیت</td>
<td>gk₁₅</td>
<td>۱۰/۰۸</td>
<td>۱/۹</td>
<td></td>
<td>۲۱/۴</td>
<td>۱۲/۷۷</td>
<td>۴/۷۱</td>
<td>۲/۷۸</td>
<td>۱/۷۷</td>
<td>۲/۷۳</td>
<td>۲/۷۳</td>
<td></td>
<td></td>
<td>۹۱/۳۹</td>
</tr>
<tr>
<td>زنیت</td>
<td></td>
<td></td>
<td></td>
<td>۱۰/۰۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۱۰۰/۱</td>
<td></td>
</tr>
<tr>
<td>اوزت</td>
<td>gk₁₉</td>
<td>۲۲/۵۸</td>
<td>۱/۷۷</td>
<td>۱۰/۲</td>
<td>۲/۴۹</td>
<td>۲/۴۹</td>
<td>۲/۴۹</td>
<td>۲/۴۹</td>
<td>۲/۴۹</td>
<td>۲/۴۹</td>
<td></td>
<td></td>
<td>۹۹/۸۱</td>
<td></td>
</tr>
<tr>
<td>اندراید</td>
<td>AD₃₄</td>
<td>۱۲/۴۳</td>
<td>۱/۶۴</td>
<td>۱/۶۴</td>
<td>۱/۶۴</td>
<td>۱/۶۴</td>
<td>۱/۶۴</td>
<td>۱/۶۴</td>
<td>۱/۶۴</td>
<td>۱/۶۴</td>
<td></td>
<td></td>
<td>۹۹/۹۱</td>
<td></td>
</tr>
<tr>
<td>دیپسید</td>
<td>gk₁₈</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td></td>
<td></td>
<td>۹۹/۹۱</td>
<td></td>
</tr>
<tr>
<td>زنیت</td>
<td></td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td></td>
<td></td>
<td>۹۹/۹۱</td>
<td></td>
</tr>
<tr>
<td>لیموپیت</td>
<td>gk₁₄</td>
<td></td>
<td></td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td></td>
<td></td>
<td>۹۹/۹۱</td>
<td></td>
</tr>
<tr>
<td>لیموپیت</td>
<td>gk₁₆</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td></td>
<td></td>
<td>۹۹/۹۱</td>
<td></td>
</tr>
<tr>
<td>فلورپیت</td>
<td>gk₁₇</td>
<td></td>
<td></td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td></td>
<td></td>
<td>۹۹/۹۱</td>
<td></td>
</tr>
<tr>
<td>عشیانیت</td>
<td>gk₁₉</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td>۱/۸۴</td>
<td></td>
<td></td>
<td>۹۹/۹۱</td>
<td></td>
</tr>
</tbody>
</table>
تغییرات عناصر در دو توده نفوذی مذکور نیز پدیده تغییر ماسه‌ای را تایید می‌نماید. تغییرات اکسیدهای عناصر اصلی سنگ‌های مختلف توده‌های نفوذی منطقه مورد مطالعه نسبت به یکدیگر (نمونه‌های هارکر، شکل‌های ۲ و ۳) حکایت از آن دارد که تبلور کاتی‌های فرمندزین، از قبیل پریروکسین و آمفیبول، موجب تنزل
(K₂O و Na₂O) و عناصر آلکالین در Al₂O₃ و CaO، FeO، MgO، TiO₂ می‌باشد. نسبت به سیلیس Al₂O₃ و CaO در نمونه‌ها کاهش قابل مشاهده‌ای را نشان دهنده از نمونه‌های فوق و مطالعه دقیق پتروگرافی چنین استنباط می‌شود که توده‌های نفوذی مربوط دادگاه تغییر از طریق تبلور پیوسته‌ای شده‌اند. پراکندگی نقاط در نمونه‌ها احتمالاً ناشی از ذوب سنگ‌های پوسته قارهای توسط ماسه‌ای گرانیتی است. بررسی نمونه‌های عنکبوتی نشان
تنه Ti و Sr، Nb و K، Ba، Rb در عناصر غنی شده و در عناصر می‌دهد که سنگ‌های منطقه از عناصر شدن[۲۰]. تغییرات شدید عناصری که گفته، بیانگر این است که توده‌های نفوذی مورد بحث احتمالاً مرتبط با مناطق فوران‌های هستند. زیرا که در محيط‌های فوران‌های رسوبات و مایع‌های همراه با آنها می‌توانند بیانگر شدگی یکی از عناصر کم‌بر بوده که خود نشان‌دهنده آلودگی با مواد پوسته‌ای در حاشیه قاره‌ها می‌باشد، از اینکه مکان ORG و MORB
تغییرات عناصر این گونه نیست و یا اینکه ممکن است پدیده‌های هضم و یا اختلاط در آن موثر بوده باشد. برای تشخیص گرانیت‌های نوع I و S و پراکندگی آنها
در ناحیه شیرکوه، کلیه آباد و آدریانا از هیستوگرام‌های فراوانی (K(K+Na)\[(Na+K+Ca/2)]\[11] و (2)\\[81] استفاده شده است (شکل 6).

![Shahrooz]
شکل ۴: نمودار تغییرات FeO و MgO در مقیاس SiO₂

شکل ۵: فرآیند تغییرات
بر اساس نمودار‌های ماتیاز و پیکولی\(^ {21}\) که از تغییرات \(\text{Al}_2\text{O}_3/(\text{K}_2\text{O}+\text{Na}_2\text{O})\) استفاده کرده شده سنجش‌های منطقه مورد مطالعه در محدوده برای و مالومین
\(\text{Al}_2\text{O}_3/(\text{CaO}+\text{K}_2\text{O}+\text{Na}_2\text{O})\)
قرار می‌گیرند (شکل 2).

فرمول کانی‌هایی که به روش میکرو‌پرای تجزیه شده‌اند (جدول 2) به شرح زیر است:

\[(K_{0.025} Na_{0.009})(\text{Ca}_{2.055} \text{Mn}_{0.017} \text{Fe}_{0.022} \text{Mg}_{0.181})(\text{Si}_8\text{O}_{22})(\text{OH})_2\]

\[(\text{Na}_{0.049} \text{Ca}_{0.509} \text{Fe}_{0.11} \text{Mg}_{0.302})(\text{Mg}_{0.892} \text{Mn}_{0.002} \text{Cr}_{0.002} \text{Ti}_{0.002} \text{Al}_{0.012})(\text{Al}_{0.002}\text{Si}_{0.998} \text{O}_6)\]

\[(\text{Ca}_{0.999}\text{Mg}_{0.005})(\text{Mg}_{0.993}\text{Mn}_{0.007})(\text{Ti}_{0.004}\text{Fe}_{0.039}\text{Al}_{0.004}\text{Si}_{1.95}\text{O}_6)\]

\[(\text{Fe}_{0.557}\text{Ti}_{0.196}\text{Cr}_{0.019}\text{Al}_{2.803}\text{Si}_{5.799}\text{O}_{2.4})(\text{Mg}_{0.774}\text{Ca}_{6.13})\]

\[(\text{Mn}_{0.003}\text{Ca}_{0.001}\text{Mg}_{1.92}\text{Fe}_{0.066})(\text{Fe}_{0.015}\text{Ti}_{0.001}\text{Si}_{0.984}\text{O}_4)\]

که می‌توان آن را به صورت \([\text{Mg}_{1.92}\text{Fe}_{0.068}\text{Si}_4\text{O}_4]\) نوشت.
فلوگوپیت در سنگهای اسکارنی توده نفوذی کافی‌ایاد (1)

(Ca_{0.009} K_{2/01} Na_{0.0082})(Ti_{0.036} Fe_{0.146} Mg_{5/745} Al_{1/031})(Al_{2/161} Si_{5/839} O_{20}) (OHCl_{0.0045} F_{0.091})

فلوگوپیت (2)

(k_{2/023} Na_{0.0099}) (Ti_{0.0036} Fe_{0.144} Mg_{5/652} Al_{1/092}) (Al_{2/122} Si_{5/878} O_{20}) (OHCl_{0.0036} F_{0.021})

4- تغییرات پتروپتیک

برای تشخیص و تفکیک توده‌های نفوذی گرانیتوئردی به طور کلی روش‌های زیر به کار رده می‌شوند: نسبت ایزوتوپی {87Sr/86Sr از 0.7}، نمودارهای QAP [24] Na_{2}O+K_{2}O/SiO_{2} در مقابل FeO*/MgO [19] براساس نمودارهای این نمودارهای کالکوکالن را از تولید بیکار کرده‌اند. FeO*/MgO در مقابل K_{2}O/SiO_{2} به نسبت‌های کالکوکالن در منطقه مورد مطالعه در سیری کالکوکالن قرار می‌گیرند (شکل 2).
بر اساس نمودار درصد وکنشی Na2O+K2O/SiO2
نمودهای منطقه مورد مطالعه در محدوده ساب آلتان و سیلیسی قرار می‌گیرند (شکل 7).

شکل 8: بررسی نموهای میدانی (1991) سنگهای ماسکینی جنوب غرب پیش در محدوده ساختمان و سیلیسی فرار

از نمودارهای دیگری که برای تمام سری‌های زیر خورشید استفاده می‌شود، نمودار QAP [20] است که محدوده‌های توانایی کالکترکالکان، گرانیت، دوریت کالکترکالکان، مونزونیت ساب کالکان، الکان پتاسیک و الکان سلیروی را از یکدیگر مجزا می‌سازد. تغییرات در طیف کالکترکالکان را می‌توان بر اساس سری‌های پلیوتوپیک در شیلی، پرو و باتولینت سیرانیوادا مورد بررسی قرار داد. با توجه به نتایج تجزیه مودال، باتولینت شیرکوه و ساب توده‌های نفوذی در محدوده گرانیتوپنیده‌های کالکترکالکان و گرانیتوپنیده‌های پوسته‌ای قرار می‌گیرند (شکل 9). ساده‌ترین تقسیم‌بندی زنتیکی گرانیتوپنیده‌ها را به دو گروه S (سری ایلامینی) و گروه I (مینیتی) تقسیم می‌کند [16 و چایل [11] و هاین و همکاران [18] برای تفاوت‌گردن گرانیتوپنیده‌های نوع S و I مشخصات جدیدی روی آرنم نمودند به نظر انگار می‌تواند به نوع I S عموشاً به صورت توده‌های نفوذی کوچک و فاقد سنگهای انفیشانی مرتبط با آنها است و طیف ترکیبی آنها از دوریت (20%)، گرانیتوپنیده‌های نوع I و گرانیتوپنیده‌های نوع S عموشاً به صورت توده‌های نفوذی بزرگ و همراه با سنگهای انفیشانی مرتبط با آنها است و طیف ترکیبی آنها از دوریت (41%)، گرانیتوپنیده‌های نوع I و گرانیتوپنیده‌های نوع S عموشاً به صورت توده‌های نفوذی بزرگ و همراه با سنگهای انفیشانی مرتبط با آنها است و طیف ترکیبی آنها از دوریت (41%)، گرانیتوپنیده‌های نوع I و گرانیتوپنیده‌های نوع S عموشاً به صورت توده‌های نفوذی بزرگ و همراه با سنگهای انفیشانی مرتبط با آنها است و طیف ترکیبی آنها از دوریت (41%)، گرانیتوپنیده‌های نوع I و گرانیتوپنیده‌های نوع S عموشاً به صورت توده‌های نفوذی بزرگ و همراه با سنگهای انفیشانی مرتبط با آنها است و طیف ترکیبی آنها از دوریت (41%)، گرانیتوپنیده‌های نوع I و گرانیتوپنیده‌های نوع S عموشاً به صورت توده‌های نفوذی بزرگ و همراه با سنگهای انفیشانی مرتبط با آنها است و طیف ترکیبی آنها از دوریت (41%)، گرانیتوپنیده‌های نوع I و گرانیتوپنیده‌های نوع S عموشاً به صورت توده‌های نفوذی بزرگ و همراه با سنگهای انفیشانی مرتبط با آنها است و طیف ترکیبی آنها از دوریت (41%)، گرانیتوپنیده‌های نوع I و گرانیتوپنیده‌های نوع S عموشاً به صورت توده‌های نفوذی بزرگ و همراه با سنگهای انفیشانی مرتبط با آنها است و طیف ترکیبی آنها از دوریت (41%)، گرانیتوپنیده‌های نوع I و گرانیتوپنیده‌های نوع S عموشاً به صورت توده‌های نفوذی بزرگ و همراه با سنگهای انفیشانی مرتبط با آنها است و طیف ترکیبی آنها از دوریت (41%)، گرانیتوپنیده‌های نوع I و گرانیتوپنیده‌های نوع S عموشاً به صورت توده‌های نفوذی بزرگ و همراه با سنگهای انفیشانی مرتبط با آنها است و طیف ترکیبی آنها از دوریت (41%)، گرانیتوپنیده‌های نوع I و گرانیتوپنیده‌های نوع S عموشاً به صورت توده‌های نفوذی بزرگ و همراه با سنگهای انفیشانی مرتبط با آنها است و طیف ترکیبی آنها از دوریت (41%)
توهدهای نفوذی بین ۲-۳ کیلوبار فرض شده است. علاوه برای مورد‌کنی کانی نشان‌دهنده دقیق سنجگاه نیز موید این مطلب است. زیرا که در هاله دنگ‌گونی ایجاد شده در اطراف توهدهای نفوذی دیپسیس که حرارت تشكیل پیش از ۳۰۰ درجه سانتی‌گراد وجود دارد (پرچمی سه‌نموده شده سنج‌اسکاریتی به روش میکروپریبا) با توجه به اینکه توهدهای پلوتونیک می‌توانند حداقل ۲۰۰ تا ۲۵۰ درجه حرارت خود را به نزدیک‌ترین سنگ‌های مجاور منتقل کنند از این رو، حرارتی در حدود ۷۵ درجه سانتی‌گراد حتی بیشتر برای توهدهای گرانیتی‌های تخمین‌زده می‌شود. در بررسی‌های پتروپیاسیکی نوع بلافاصله سنگ‌های نیز می‌تواند به عنوان کلیدی برای شناخت منشا ماهی‌ها موثر باشد.

در سنگ‌های منطقه مورد مطالعه بافت‌های برگه‌ای، آنتی‌برگه‌ای و گرایفیک (گرانیتی‌پیش) به فراوانی مشاهده می‌شود. وجود بافت‌های برگه‌ای منطقه شناختن بلور سنگ تحت فشار بخار آب (زیر ۲ کیلوبری) در می‌شود. نوع و ارتوس بوده است به چین بستگی گرانیت‌هایی گرانیت‌هایی، فرود و دیگر سنگ‌های همبستگی می‌شود. بلافاصله سنگ‌های همبستگی موجود حاصل رشد همزمان کوارتز و فلزات آنکار تکه‌های سنگی که تکه‌هایهای اصلی که مناسب مشابه تکه‌ای به خاطر کوثریک‌ها دارد می‌باشد. می‌شود (۲۲) کانی‌های سیلیکات‌های موجود در گرانیت‌ها را بعنوان بلورهای بی‌گیاهی مشخص نموده و وجود آنها را به عنوان شناخت دمای سنگ‌های پیشته‌ای [۲۵] و وجود آلومینوسیلیک‌ها در سیلیکات‌های موجود در گرانیت‌ها در غرفه‌هایی را بعنوان رستیتی ممکن می‌داند. [۲۸] منیز عقیده دارد در سنگ‌های گرانیتی نوع S مواد رسپیتی‌های و رویکاری فتواف نشان می‌شود. آنتی‌برگه و می‌شود سیلیکات در گرانیت‌های همبستگی شیرکه از نوع اولیه هستند. چون هر دو بر خلاف نوع دنگ‌گونی فاقد ادخال‌های کربنی بوده و
بصورت شفاف دیده می‌شوند. بنابراین می‌توان نتیجه گرفت که این کاتیوی‌ها بصورت اولیه از یک ماده مکمل پرآلومین می‌توانند شکل قادیریت‌های فاقد ادخال از یک ماده گرانیتی را گزارش کنند [۱۴].

\[
\text{NaAlSi}_3\text{O}_8 - \text{KAlSi}_3\text{O}_8 - \text{SiO}_2
\]

شکل ۱۰: موقعیت سنگهایی نفوذی جنوب غربی یزد و ارتباط آنها با ناحیه حرارت زیر پایین سیستم ساختاری (تاکل و پار، ۱۹۵۸). سیستم تحت فشار بخار آب یک کیلوبار است.

نمونه‌های کافی ایند:

۵ - موقعیت تکتونیکی:

با استفاده از نمودارهای تشخیص محیط‌های تکتونیکی، که توسط متیارو و پیکولی [۲۱] ارائه شده است به طور کلی گرانیت‌هایی در سه گروه ۱، ۲ و ۳ قرار می‌گیرند. جنگله با استفاده از نمودارهای درصد و این FeO/FeO+MgO، Al\textsubscript{2}O\textsubscript{3}/SiO\textsubscript{2}، K\textsubscript{2}O/SiO\textsubscript{2} (شکل ۱۱) تعدادی از سنگهای گرانیت‌های منطقه را در محدوده به پود POG در مقابل FeO/MgO و SiO\textsubscript{2} نیز نشان می‌دهد که گرانیت‌های شیرکوه، کافی‌آباد و آدلیدانز از نوع گرانیت‌هایی پس از کوه‌زایی (PGO) (مستند) در نمودار FeO/SiO\textsubscript{2} K\textsubscript{2}O/SiO\textsubscript{2} و Op معرف (PGO). POG در نمودار بازی‌نگر و بودن [۱۰] پلاژیوگرانیت‌های اقیانوسی است که تحت عنوان M نامگذاری شده است [۷]. نمودار بازی‌نگر و بودن [۱۰] گرانیت‌هایی مورد نظر را از نوع همزمان با کوه‌زایی و بعد از کوه‌زایی معرفی می‌نماید (شکل ۱۲). علاوه برای برای تشخیص محیط‌هایی گرانیت‌های از عناصر کمیاب [۱۷] نیز می‌توان استفاده کرد.

عناصر کمیاب سنگهایی مکمل پرآلومینی جنوب غربی یزد با نمودارهایی به‌منظور محیط‌های اقیانوسی و ORG [۲۴] و مناطق فرورانش (حاصلی فعال قاره) مقایسه شده است. این نمودارها در این نقاط ماکزیمم و
می‌تواند به این‌سانه‌ها نیز باعث غنی‌شدن چندین عنصر کمیاب شود. این‌که در شکل ١٣ رایزنی‌های تی، اس و تی‌هی‌سکی از عنصر Rb، K، Ba شکل‌گیری کرده‌اند. این نمودارها اثره شده‌اند. علاوه بر هضم رسوبات مربوط بر صفحه فرو رنگ در مناطق فرو رانش که می‌تواند باعث غنی‌شدن موتر بوده‌اند.
شکل 11: نمودارهای مختلف ماتبار و پیکولی (1989) برای تشخیص میکروکی پیکولی‌های گرانیتی‌های جنوب غرب یزد از نوع گرانیتی‌های پس از کوه‌ریزی (POG)
پتروژی و زمین‌شناسی نفوذی جنوب غربی ایران

۱۲. نمودار بین نوع همزمان با کوهزایی و بعد از کوهزا

۱۳. نمودار اسیدی می‌شود از K, Rb, Ba.
در اینجا نمی‌توانم پلکانی را بخوانم.
پتروپزی و زنوشیمی توده‌های بنفودی جنوب غرب یزد

مورد مطالعه بیشتری قرار گیرد. ضمناً کاتی سازی آهن-مس-سرب-روی و کانی‌های غیر فلزی نظیر کانولینیت نیز مشاهده می‌شد. بر مبنای داده‌های زنوشیمی‌ای و پایین بودن نسبت Rb/Sr می‌توان گفت که توده‌های بنفودی گرانیت‌وندی جنوب غرب یزد حداکثر از نظر قلع و تنگستان، تهی هستند. ویل برای بررسی پتانسیل سایر عناصر، انجام مطالعات ایزوتوپی و تعیین دقیق عناصر، انجام مطالعات ایزوتوپی و تعیین دقیق عناصر کمیاب لازم و ضروری است.

پاورپوینت

1- Spider diagram
2- Rollinson
3- Reyre, D.& Mohafez
4- Forster
5- Debon & Lefort
6- Shelly
7- Barker
8- Chappell & White
9- Hine et al
10- Maniar & Piccoli
11- Sylvester
12- Miyashiro
13- Lameyre & Boden
14- Irvine & Baragar
15- Auboin et al
منابع

1- حسن نزار، علي اکبر (1374)، بحثی در مورد پتروگرافی و زنوشیمی بتولیت شیرکوه، دانشکده علوم پایه دامغان.
2- خسرو تهرانی، خسرو و زینبی مقدم، حسین (1371)، خلاصه‌ای از چینه‌شناسی و جغرافیایی دیرینه دوره کرطاسی در نواحی شیرکوه یزد، دانشگاه تهران. (مجموعه مقالات بررسی مسائل منطقه‌ی کویری و بیابانی ایران).
3- درویشزاده، علی (1370)، زمین‌شناسی ایران، جاباول، انتشارات نشر آموز.
4- زارعی سهامیه، رضا (1378)، مطالعه مگماتیسم جنوب غرب یزد (منطقه آنار، عقد). موضوع رساله دکترای دانشگاه تربیت معلم.
5- کلانتری سرمشه، محمد رضا (1375)، پتروگرافی و زنوشیمی بتولیت گرانیت‌هایی شیرکوه یزد، پایان نامه کارشناسی ارشد دانشگاه تربیت معلم.
6- معین وزیری، حسین. دیباج، ایپسی سرزمین‌های ایران(1376)، انتشارات دانشگاه تربیت معلم.
7- ویلی زاده، محمد ولی (1371)، پتروگرافی تجریبی و تکنیک کلی، جلد دوم، اندازه‌ها و گرانیت‌ها، انتشارات دانشگاه تهران.
25. Pitcher, W. S., 1993, the nature and origin of granites, Blackie Academic & professional.
28. Shelley, D, 1993, Igneous and Metamorphic rocks under the microscope chapman and Hall, london.