پترولوئی و زئوسیمی توده‌های نفوذی جنوب غرب یزد

زارعی سهامیه رضا: دانشگاه لستان
امینی صدرالدین: دانشگاه تربیت معلم تهران

(صفحه 379، 14 و 23 شماره 1 جلد 1)

چکیده
در جنوب غرب یزد، سه توده گرانیت‌نوازی به اسمی بولوتی شیرکو، کاکای آباد و آذرستانی‌شهر دارند. سن بولوتی شیرکو به توجه به اینکه سازند نابینای (برای نقطه‌ای) را قطع کرده و گردنزنگی کرتنامه بر روی آن قرار گرفته، به اختلاف زیاد زوراسیک است. به نظر می‌رسد اولین و مهم‌ترین مرحله مگامائنیش باشد که در زوراسیک میانی (سهمی پیسی) افتراق اقدام است. از طرفی نگرگوی سنگ‌های آهکی کرتتنامه در اطراف توده‌های نفوذی کاکایآباد و آذرستانی‌شهر در اثر بازگشت در اثر نفوذ گردنزنگی‌ها، دایک‌های نابینای و نیز تنش شکل‌دهی‌ها بیان پدیده منتشر شده و خون‌مانی می‌دهد که توده‌های نفوذی کاکایآباد و آذرستانی‌شهر طی فازهای کوه‌ساختی بعدی جای گزین شدهاند. یکی از این بولوتی شیرکو و گرانیت‌نوازی شیرکو دارای محدوده وسیع بولوتی شیرکو طی زمان زوراسیک است و مهم‌ترین مرحله آن در زوراسیک میانی افتراق اقدام است بعلاوه به احتمال زیاد دو توده نفوذی کاکایآباد و آذرستانی‌شهر به دلیل نگرگوی آهکی کرتتنامه اطراف حداکثر از کرتتنامه زیرین جوانتر بوده و شاید هم دارای سنی بیشتر این سنگ‌های کاکایآباد کوارترز، بایوت، زیربرنک، کورپریت، آنادیژیت، لمینیت و همانندی که کاکای آباد یافته و نیز مقادیری Na₂O، SiO₂، Ti، Sr، Nb، K، Ba، Nb در نقطه مختلف توده‌های نفوذی متفاوت و به شکلی از عنصر CaO، K₂O و نیز هم‌شکلی از کاملا مشابه می‌شود، نمودار نیکبینی این موضوع در شناسنامه و به کرتتنامه نگوی انواع و S در منطقه قابل شناسایی است که نوع از فراوانی بیشتری رخ خوره است. بر اساس یک نظریه اقتصادی کاکای آباد نزدیک‌ترین نیز مشاهده می‌شود.

۱- موقعیت جغرافیایی و زمین‌شناسی
توده‌های نفوذی شیرکو، کاکایآباد و آذرستانی‌شهر در جنوب غرب یزد و در محدوده جغرافیایی ۳۰°۳۰ تا ۲۰°۳۰ طول شرقی و ۳۰°۵۰ تا ۳۰°۲۵ عرض شمالی قرار دارند (شکل ۱). در شرق شیرکو بیش از ۱۰۰۰ متر سنگ آهک و دولومیت بر روی گردنزنگی‌های دیده می‌شود که پرگاه‌های گلی و غیرگلی فراوانی را به وجود آوردهاند. در جنوب غرب تتفش رسوپاتی اداری سازنده سنگستان به سبب زوراسیک فوقانی به رنه رنگ قرمز ارغوانی دیده می‌شود و در بخش جنوبی تتفش سنگ‌های آهکی خاکستری رنگ‌های سنگ‌های تتفش به جهش می‌خورد. قلل مرتفع منطقه از سنگ‌های آهکی اریتوپلیت‌های سازنده تتفش یوشیه شده که گسترش زیادی دارد. از
پیده‌های مهم فرسایش در گرانیت‌های مورد بحث پیده ناقصی است. گرانیت‌شورکه‌های سنگین تا ناپدید را قطع کرده و اهک‌های کرتاسه همان‌گونه با یک واحد سخت‌سازی گیاهی کرتاسه مورد بحث پیدا شده‌اند. به طور دقت شیب برفی آن قرار گرفته است. غرب قسمت گرایش به فرآیند سیستمی از نظر سنی از سانزه، ناپدید و از سانزه پایین قسطور است. سن K-Ar مطلق که بر اساس داده‌های رادیومتریک برای آن پیشنهاد شده است ۱۲/۵ ± ۱۷ میلیون سال [۱۷] به‌روش آورده است. سن توده‌های نفوذی کافی آب و آدلیند را به توجه به دگرگونی اهک‌های کرتاسه و اسکارن‌سازی در آنها بعد از کرتاسه زیرین (شاید هم الیگو-میوپس) است. با این می‌توان تشکیل گرانیت‌شورکه را به سه میلان پسین نسبت داد و توده‌های نفوذی کافی آب و آدلیند را به فاز های کوژنی بعده مریب دانست. انچه مسلم است که تکنیک سیستمی اپی‌ولیت گرانیت‌شورکه عنوان شده است که باید تا جایگزینی گرانیت در زمان‌های مختلف است. تمایل دیق این موضوع مسلم بررسی دیق سنگی ایزوتروپی بر روی اجزای مختلف گرانیت‌شورکه است.

[شکل ۱. موقعیت جغرافیایی توده‌های کراتونی توده‌های جنوب غرب یزد]
کوزن‌کن‌های سیمی پسن (زاروسیک مبنا) و توده‌های نفوذی کافی‌آب در آذری‌ستان بعد از کرکس‌های زیرین جای‌گیری شده‌اند. به طور کلی سنگ‌های گرانیتی بر اساس ترکیب شیمیایی، کانی‌شناسی و استحکام‌پذیری بخش‌های الیمنتی و $I, A, M$ انواع $I, A, S$ و $I, S$ تقسیم می‌شوند. در منطقه بزرگی سه گروه گرانیتی را به دو نوع $I$ و $S$ با سری الیمنتیات $S$ و منبتیت $S$ منبتیت و منبتیت $I$ هم از نظر سری الیمنتیات معلقیت نموده که سری الیمنتیات معلقیت نوع $S$ و سری الیمنتیات نوع $I$ هم از نظر سری الیمنتیات معلقیت $S$ و $I$ هم از نظر $S$ نیز در منطقه مراکز کانونی های وری‌لنگند، هوری‌لندن و کانونی ایاپاک (الیمنتی و کانونی های سولفید) نیز دارند. این نوع سری الیمنتیات بیشتر با تولناپیتهای زیرین و در بیرون‌الوده، دیده می‌شود. نسبت ایزوتوپی $^{87}Sr/^{86}Sr$ از $0.708$ کمتر است و عمداً با کانای‌زایی مس، مولبدن، سرب، روی، طلا و نقره همراهند.

2- پتروگرافی و کانی‌شناسی

در گستره پلوتونیسم جنوب غرب یزد به گرانیت‌های برخوردار می‌کنیم که داشت تا دانه در شرطت و در آنها هواداری شدید سطحی و تغییر رنگ ناشی از هواداری پیداست. حضور پیگشانه سنگ‌های بیضوه و گرد به صورت لکه‌های بی‌رنگ در این گرانیت‌ها به‌وجود آمده می‌شود. پیک اولیه دانه‌های اسیدی و گرد درون گرانیت‌ها و رنگ هایی از نوع آله‌یت - یاگانتیت حاوی هایوری‌لندن هم سیمین مشاهده کرد. توده‌های کوچک ولکانیکی با صورت گندی‌های داسی و ریولیتی، گزاردها و توپنیتهای تراکیتی و ولکانیکی و نیز در انزدیت‌ها و تانزینگ‌ها در هم‌بری با گرانیت‌ها و در منابع گسل‌ها (به‌خصوص گسل دیمی)، با روند شمال غرب جنوب شرق دیده می‌شود.[13] اساس طبقه‌بندی سنگ‌های گرانیتی، تونالیت، کوارتز سینیت و کوارتز مونوژنیت (شکل 2).
کاتی های اصلی سنگ‌های شالی کورتاز، پلاژیوکلزا (آلبیت، بیگوکلاژ و آندزین)، ارتوز و میکروپوریت به
مقدار خلیل کم موسکوتیت هستند. پلاژیوکلزا ساخته منطقه‌ای ناشن مِندَهْن، که بیان‌گر افت سرعت فشار و
تغییرات ترمودینامیکی محیط تبلور است [2] [3] [4]. تغییرات متذکر احتمالاً موجب تغییر در ترکیب شیمیایی
زون‌های مختلف پلاژیوکلزا شده است؛ زیرا که زون‌های مکوسک در بعضی از پلاژیوکلزا دیده می‌شود
(نموده 18). در مقاطع نازک دو نسل پلاژیوکلزا و گاهی نیز پیشی دیده می‌شود. کاتی‌های فرعی موجود در
سنگ‌ها ایشان، زیرکن (انخل در بیوتیت)، اسن، تورمالین، استیل (نوع هرسینیت)، گارنت [4] همایش و
منیتیت هستند. در گراییت‌های شیروکه کورثیورت، اندنوزیت و سلیپیتیت نیز وجود دارد. در حالی که توده‌های
نفوذی کافی‌الابد و آب‌رسانها فاقد اسن هستند، در اسکارن‌های سیاه در پرتو گازوط و نسبت‌های ترکیبی تشكل شده
ایپیدت، دیپسید، اتیروگن (آندزین)، کلریت (شامورزیت)، سرپانتیت (لیزرادتیت)، فلوریت و زنونیت دیده
می‌شود. کاتی‌های مذکور در اسکارن‌ها توسط مطالعه مقاطع نازک و یورز شیمی‌شناختی X.R.D. تعیین شده‌اند.

عمده‌ترین بافت شانه‌شده در سنگ‌های فوق بافت‌های گرانولر، گرافیت (گرانوفیر)، اربکولار، پرتیت،
انتی‌پرتیت و پورفورینتند. آتراپاسیون‌های یک‌عمده در رابطه با گرانولیت‌ها عبارتند از: سری‌بی‌رتوسین،
سوسوئیزینسیس، کلرین‌سیسی و سرپانتیت‌سیسی و سرپانتیت‌سیسی شون در هاله دگرگونی مجاری‌بندی قابل روند
است. بررسی مقاطع نازک اینکلاهوئی موجود در گرانولیت‌ها، نشان می‌دهد نقاطه که در درون گرانولیت به صورت
لکه‌های سیاه، رنگ دیده می‌شود عمداً تجمیعی از بیوتیت‌های دانه‌زی همراه با کوارتز، پلاژیوکلزا و فلسیت
الگان است که همبستی این با گرانولیت حالت انتقالی را تایید می‌کند. این حالت می‌تواند احتمالاً حاکی از هم‌زائ
بونده اینکلاهوئی مذکور با گرانولیت‌ها باشد [1]. علاوه بر این‌ها، اینکلاهوئی دیده شده است که بافت هورنفلسی
دارند و ترکیب بازیکی را نشان می‌دهند [5]. البته اینکلاهوئی می‌تواند رسته‌ی بهاییم‌اند از سنگ‌های اولیه طی
تحولات فرا مانومورفورزمی باشد.

3. خصوصیات زنی شیمیایی

به منظور بررسی زنی شیمیایی و تعیین نوع گرانولیت‌های باتولیتی شیروکه و سایر توده‌های نفوذی، از میان
نموده‌های برداشته شده از ناحیه، ۱۰۰ نمونه مناسب انتخاب و بعد از آن تجزیه در ترکیب شیمیایی
(جدول ۱) و کمیات آن (جدول ۲) به روش X.R.D. قرار گرفته شده‌اند (جدول ۳). برای تعیین ترکیب شیمیایی دقیق کاتی‌های دیده در هاله دگرگونی مجاری‌بندی و تغییرات ترکیب شیمیایی آنها، سه نمونه سنگ
اسکارنی به کانادا ارسال شد و مورد تجزیه نقطه‌ای (میکروپریاب) قرار گرفته (جدول ۴). در صورت تغییرات در
باتولیت گرانولیتی شیروکه عبارت‌ست از: FeO از ۱۲/۰۵ تا ۱۲/۰۷، Al۲O۳ از ۱۴/۰۷ تا ۱۳/۰۲، SiO۲ از ۳۵/۰۷ تا ۵۱/۰۷.
پترولئیمی و زنگه‌ای توده‌های نفوذی جنوب غرب یزد

از راه‌های مختلفی می‌توان باعث شد که توده‌های نفوذی جنوب غرب یزد به شکل متنوع تری از پدپوشی که به عنوان مصرف‌کننده سایر توده‌های نفوذی جنوب غرب یزد و راه‌های توده‌های نفوذی منطقه را شکل می‌دهد.

جدول ۱: نتایج تجزیه شیمیایی چند نمونه از سنگ‌های مختلف توده‌های نفوذی جنوب غرب یزد

<table>
<thead>
<tr>
<th>نمونه</th>
<th>SiO2</th>
<th>Al2O3</th>
<th>CaO</th>
<th>K2O</th>
<th>Fe2O3</th>
<th>FeO</th>
<th>Na2O</th>
<th>MgO</th>
<th>TiO2</th>
<th>P2O5</th>
<th>MnO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>72/1</td>
<td>6/12</td>
<td>1/19</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>9/88</td>
</tr>
<tr>
<td>B2</td>
<td>72/1</td>
<td>6/12</td>
<td>1/19</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>9/44</td>
</tr>
<tr>
<td>B3</td>
<td>72/1</td>
<td>6/12</td>
<td>1/19</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>9/44</td>
</tr>
<tr>
<td>B4</td>
<td>72/1</td>
<td>6/12</td>
<td>1/19</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>9/44</td>
</tr>
<tr>
<td>B5</td>
<td>72/1</td>
<td>6/12</td>
<td>1/19</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>9/44</td>
</tr>
<tr>
<td>B6</td>
<td>72/1</td>
<td>6/12</td>
<td>1/19</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>9/44</td>
</tr>
<tr>
<td>B7</td>
<td>72/1</td>
<td>6/12</td>
<td>1/19</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>9/44</td>
</tr>
<tr>
<td>B8</td>
<td>72/1</td>
<td>6/12</td>
<td>1/19</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>9/44</td>
</tr>
<tr>
<td>B9</td>
<td>72/1</td>
<td>6/12</td>
<td>1/19</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>9/44</td>
</tr>
<tr>
<td>A10</td>
<td>72/1</td>
<td>6/12</td>
<td>1/19</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>9/44</td>
</tr>
<tr>
<td>A11</td>
<td>72/1</td>
<td>6/12</td>
<td>1/19</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>9/44</td>
</tr>
<tr>
<td>A12</td>
<td>72/1</td>
<td>6/12</td>
<td>1/19</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>9/44</td>
</tr>
<tr>
<td>A13</td>
<td>72/1</td>
<td>6/12</td>
<td>1/19</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>9/44</td>
</tr>
<tr>
<td>A14</td>
<td>72/1</td>
<td>6/12</td>
<td>1/19</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>9/44</td>
</tr>
<tr>
<td>A15</td>
<td>72/1</td>
<td>6/12</td>
<td>1/19</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>9/44</td>
</tr>
</tbody>
</table>

جدول ۱: نتایج تجزیه شیمیایی چند نمونه از سنگ‌های مختلف توده‌های نفوذی جنوب غرب یزد (الف)
جدول 1. نتایج تجزیه شیمیایی عناصر کمیاب سنگ‌های مگمایی: الف: شیروه به روش X.R.F. به همراه بررسی میزان گسترده.

<table>
<thead>
<tr>
<th>ماده</th>
<th>Sr</th>
<th>Rb</th>
<th>Ba</th>
<th>Zn</th>
<th>Ce</th>
<th>La</th>
<th>Zr</th>
<th>Cu</th>
<th>V</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>6</td>
<td>150</td>
<td>443</td>
<td>9</td>
<td>10</td>
<td>18</td>
<td>12</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>100</td>
<td>184</td>
<td>34</td>
<td>51</td>
<td>153</td>
<td>15</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>88</td>
<td>161</td>
<td>68</td>
<td>61</td>
<td>162</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>112</td>
<td>132</td>
<td>74</td>
<td>20</td>
<td>222</td>
<td></td>
<td>12</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>144</td>
<td>244</td>
<td>44</td>
<td>55</td>
<td>267</td>
<td></td>
<td>24</td>
<td>30</td>
<td>54</td>
<td>19</td>
</tr>
<tr>
<td>B6</td>
<td>195</td>
<td>195</td>
<td>344</td>
<td>34</td>
<td>369</td>
<td></td>
<td>44</td>
<td>48</td>
<td>54</td>
<td>38</td>
</tr>
<tr>
<td>B7</td>
<td>195</td>
<td>151</td>
<td>28</td>
<td>20</td>
<td>201</td>
<td>7</td>
<td>28</td>
<td>30</td>
<td>54</td>
<td>19</td>
</tr>
<tr>
<td>B8</td>
<td>114</td>
<td>124</td>
<td>180</td>
<td>50</td>
<td>201</td>
<td>7</td>
<td>28</td>
<td>30</td>
<td>54</td>
<td>19</td>
</tr>
<tr>
<td>B9</td>
<td>88</td>
<td>148</td>
<td>180</td>
<td>30</td>
<td>201</td>
<td>7</td>
<td>28</td>
<td>30</td>
<td>54</td>
<td>19</td>
</tr>
<tr>
<td>B10</td>
<td>117</td>
<td>142</td>
<td>245</td>
<td>40</td>
<td>222</td>
<td>7</td>
<td>28</td>
<td>30</td>
<td>54</td>
<td>19</td>
</tr>
<tr>
<td>B11</td>
<td>144</td>
<td>244</td>
<td>44</td>
<td>55</td>
<td>267</td>
<td></td>
<td>44</td>
<td>48</td>
<td>54</td>
<td>38</td>
</tr>
<tr>
<td>B12</td>
<td>114</td>
<td>124</td>
<td>180</td>
<td>50</td>
<td>201</td>
<td>7</td>
<td>28</td>
<td>30</td>
<td>54</td>
<td>19</td>
</tr>
<tr>
<td>B13</td>
<td>88</td>
<td>148</td>
<td>180</td>
<td>30</td>
<td>201</td>
<td>7</td>
<td>28</td>
<td>30</td>
<td>54</td>
<td>19</td>
</tr>
<tr>
<td>A1</td>
<td>6</td>
<td>121</td>
<td>242</td>
<td>20</td>
<td>201</td>
<td>7</td>
<td>28</td>
<td>30</td>
<td>54</td>
<td>19</td>
</tr>
<tr>
<td>G1</td>
<td>23</td>
<td>123</td>
<td>242</td>
<td>20</td>
<td>201</td>
<td>7</td>
<td>28</td>
<td>30</td>
<td>54</td>
<td>19</td>
</tr>
<tr>
<td>G2</td>
<td>145</td>
<td>249</td>
<td>44</td>
<td>55</td>
<td>267</td>
<td>12</td>
<td>34</td>
<td>44</td>
<td>54</td>
<td>38</td>
</tr>
</tbody>
</table>

جدول 2. نتایج تجزیه شیمیایی عناصر کمیاب سنگ‌های مگمایی: ب: کافی آباد ج: اردن‌تند.

الف: 

<table>
<thead>
<tr>
<th>ماده</th>
<th>Sr</th>
<th>U</th>
<th>Pb</th>
<th>Zn</th>
<th>Ni</th>
<th>Co</th>
<th>Y</th>
<th>Nd</th>
<th>Nb</th>
<th>B</th>
<th>Al</th>
<th>Th</th>
<th>W</th>
<th>V</th>
<th>Cr</th>
<th>S</th>
<th>Ba</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>152</td>
<td>172</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>10</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>152</td>
<td>172</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>10</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>152</td>
<td>172</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>10</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>152</td>
<td>172</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>10</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>152</td>
<td>172</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>10</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>B6</td>
<td>152</td>
<td>172</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>10</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>B7</td>
<td>152</td>
<td>172</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>10</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>B8</td>
<td>152</td>
<td>172</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>10</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>B9</td>
<td>152</td>
<td>172</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>10</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>B10</td>
<td>152</td>
<td>172</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>10</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>B11</td>
<td>152</td>
<td>172</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>10</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>B12</td>
<td>152</td>
<td>172</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>10</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>B13</td>
<td>152</td>
<td>172</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>10</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>152</td>
<td>172</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>10</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td>152</td>
<td>172</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>10</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>152</td>
<td>172</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>10</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>
جدول ۳: کانی‌های سنج قطعات اکسکارنی‌های مرگ‌و‌بردی به روش X R D

<table>
<thead>
<tr>
<th>کانی</th>
<th>SiO&lt;sub&gt;2&lt;/sub&gt;</th>
<th>TiO&lt;sub&gt;2&lt;/sub&gt;</th>
<th>Al&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt;</th>
<th>MgO</th>
<th>CaO</th>
<th>Cr&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt;</th>
<th>MnO</th>
<th>FeO</th>
<th>Na&lt;sub&gt;2&lt;/sub&gt;O</th>
<th>K&lt;sub&gt;2&lt;/sub&gt;O</th>
<th>F</th>
<th>Cl</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>gk&lt;sub&gt;12&lt;/sub&gt;</td>
<td>۵/۰۳۳</td>
<td>۱/۰۸۸</td>
<td>۱/۸۵۵</td>
<td>۲/۹۴۴</td>
<td>۲/۸۵۰</td>
<td>۴/۰۶</td>
<td>۱/۳۴</td>
<td>۱/۰۱</td>
<td>۰/۱۲</td>
<td>۰/۰۲</td>
<td>۲/۰۰</td>
<td>۰/۱۰</td>
<td>۵۸/۱۸</td>
</tr>
<tr>
<td>gk&lt;sub&gt;23&lt;/sub&gt;</td>
<td>۴/۰۶</td>
<td>۶۸/۹۹</td>
</tr>
</tbody>
</table>

جدول ۴: نتایج تجزیه میکرو‌برایه نمونه اسکارنی جنوب غربی

نام نقش کانی‌های فوق براساس آزمایشات شیمیایی و محاسبات کانی‌ها با اینگونه ۲۷ کانی، به‌روش پروپتکسیون به میانه ۶ کانی، به‌روش گروه‌بندی به میانه ۱۴ کانی، به‌روش اسکیورا بر میانه ۹۳ کانی، به‌روش گروه‌بندی به میانه ۹۳ کانی، به‌روش گروه‌بندی به میانه ۹۳ کانی، به‌روش گروه‌بندی به میانه ۹۳ کانی.
تغییرات عناصر در دو توده نفوذی مذکور نیز پدیده تغییر ماده‌ای را تایید می‌نماید. تغییرات اکسیدهای عناصر اصلی سنگ‌های مختلف توده‌های نفوذی منطقه مورد مطالعه نسبت به یکدیگر (نمودار هارکر، شکل‌های ۳ و ۴) حکایت از آن دارد که تبلور کانی‌های فرومیزین، از قبیل پیریکسی و آنفاقول، موجب تنزل (K_2O و Na_2O) و افزایش مقدار Al_2O_3 و عناصر آلکالین (K، Ca، Fe، Mg، Ti_2O_3) در ماده باقیمانده شده و متعاقب آن تبلور بلوریکلاز باعث شده است که مقادیر Al_2O_3 و CaO در نمودارها کاهش یافته باشد. نشان دهنده از نمودارهای فوق و مطالعه دقیق پتروگرافی، این استیل، نمودارهای احتمالاً ناشی از ذوب سنگ‌های بوته قرار ای توسط ماده‌ای گرانیتی است. بررسی نمودارهای عنکبوتی نشان می‌دهد که سنگ‌های منطقه از عناصر شده‌است [۲۷]. تغییرات شدید عناصری که در این می‌توانند باعث شده نشان دهنده آلوگرامی به وسیله قرار دادن ماده بوته در حاشیه قاره‌ها است. پدیده‌ها هضم و یا اختلاف در آن موثر بوده باشند. برای تشخیص گرایی‌های نوع I و S و پراکندگی آنها
در ناحیه شیرکوه، کافی آباد و آدر بلندان از هیستوگرام‌های فراوانی [18] استفاده شده است (شکل ۵).

شکل ۳: نمودار تغییرات SiO۲ در مقیاس Al۲O۳ و CaO، K۲O/Na۲O

نتیجه‌های شیرکوه: نتیجه‌های کافی آباد و آدر بلندان
شکل ۴: نمودار تغییرات FeO و MgO در مقابل SiO₂

شکل ۵: هیستوگرام افرادی که گرانیت نوع I از نوع S جدایی کرده‌اند (جایی و واپت، ۱۹۷۴)
شکل ۶: هیستوگرام افرادی که گرانیت نوع S است (فاخر و همکار، ۱۹۷۸)
بر اساس نمودارهای ماتیاس و پیکولی[11] که از تغییرات (K2O+Na2O) آسکارن توده‌های فوژی-گری و بی‌باکتی‌ز در مقابل Al2O3/(CaO+K2O+Na2O) استفاده شده سنگ‌های منطقه مورد مطالعه در محدوده بیرالومین و ماتالومین Q3ر5 گیگردند (شکل ۶).
فلوگوپیت در سنگ‌های اسکارینی توده نفوذی کافی، [1]

\[
\begin{align*}
(Ca_{0.009} K_{2/01} Na_{0.0082}) (Ti_{0/036} Fe_{0/146} Mg_{5/745} Al_{1/031}) (Al_{2/161} Si_{5/839} O_{20}) (OHCl_{0/0045} F_{0/091})
\end{align*}
\]

فلوگوپیت [2]

\[
\begin{align*}
(k_{2/023} Na_{0.0099}) (Ti_{0/036} Fe_{0/144} Mg_{5/652} Al_{1/092}) (Al_{2/122} Si_{5/878} O_{20}) (OHCl_{0/0036} F_{0/0921})
\end{align*}
\]

۴- تحولات پترولوژیکی

برای تشخیص و تشکیل توده‌های نفوذی گراتینوئیدی به طور کلی روش‌های زیر به کار برده می‌شوند: [۳۰] \(Na_2O/K_2O\), \(Al(Na+K+Ca/2)\), \(K/(K+Na)\), نسبت ایزوتروپی \(Sr^{87}/Sr^{86}\) نمودارهای (MGO+FeO*+TiO\(_2\))/SiO\(_2\) در مقابل \((Al_2O_3+CaO)/(FeO*+Na_2O+K_2O)\) و AFM, [۲۲] \(Na_2O+K_2O/SiO_2\), [۲۳] SiO\(_2\) در مقابل FeO*/MgO نمودارهای [۱۹] براساس Nمودارهای FeO*/MgO و AFM که نسبت‌های کالکترونی را از تونلتیک جدا می‌کند سنگ‌های مagmaی منطقه مورد مطالعه در سری کالکترونی قرار می‌گیرند (شکل ۱).
بر اساس نمودار درصد وزنتی که توسط میدلموست [22] ارائه گردیده است Na₂O+K₂O/SiO₂ نمونه‌های منطقه مورد مطالعه در محدوده ساب آلکالن و سیلیسی قرار می‌گیرند (شکل).}

\[ \text{شکل 7: نمودار اریون و بارگر (1971) و (ب): بیان‌بَر (1974) که سری‌های کالکوالکالن و تولیدی را از هم جدا می‌کند. نمونه‌های منطقه مورد مطالعه در هر دو نمودار خصوصیات کالکوالکالن را نشان می‌دهند.} \]

از نمودارهای دیگری که برای تایپینگ سری‌های گرانیتی استفاده می‌شود، نمودار QAP (200) است که محدوده‌های تونالیت با ترونومیت کالکوکالکان، گراندویورت کالکوکالکان، مونزونیت سب آلانکان، آلانکان پتاسیک و آلانکان سیلیک آراز یکی‌گز می‌سازد. تغییرات در طیف کالکوکالکان را می‌توان با اساس سیری‌های پلٹونیک در شیلی، پرو و باتولیت سیران‌نادا مورد بررسی قرار داد. با توجه به هدف محاسبه میزان باتولیت شیرکو و سایر توده‌های نفوذی در محدوده گراندویورتی‌های کالکوکالکان و گرانیت‌های بوستن‌های خیالی قرار می‌گیرند (شکل 9). ساده‌ترین تفسیری‌های زنده‌ی گرانیت‌ها را به دو گروه S (سری ایلامیتی) و گروه I (سری ایلامیتی) تقسیم می‌کند (16) وایت و چایل [11] و هاین و همکاران [18] برای تفکیک گراندویورتی‌های نوع S و I مشخصات جدیدی را عوامل نمودند به نظر آنها گرانیت‌های نوع S عموماً به صورت توده‌های نفوذی کوچک و فاقد سنگهای انتفاضانی مرتبط با آنها است و طیف ترکیبی آنها از دبیریت (20%)، گراندویورت (18%) تا گرانیت (10%) تغییر می‌یابد. جناهیگ گراندویورتی نوع I عمولاً به صورت توده‌های نفوذی بزرگ و همراه با سنگهای انتفاضانی مرتبط با آنها است و طیف ترکیبی آنها از دبیریت (15%)، گراندویورت (40%) تا گرانیت (35%) تغییر یافته است.

در محدوده مورد مطالعه باتولیت شیرکو به‌شکل با نوع S و توده‌های نفوذی کالکوکالکان و آدربلدان با نوع I مطابقت دارد. برای بررسی شرایط دما و فشار تشکیل توده‌های نفوذی جنوب غرب باز از نمودارهای دوتایی سیستم آلپین و ارتزو (29) استفاده شده (شکل 10) و با توجه به حضور گسترش‌دهنده مکروپترایت در باتولیت گراندویورتی‌های شیرکو و پرنیت آنتی‌پریت در توده‌های نفوذی کالکوکالکان و آدربلدان فشار بخار اب حاکم بر تشکیل
توده‌های نفوذی بین ۲۰۱ کیلوبار فرسوده است. علاوه بر این، مورد کانی شناسی دقیق سنگ‌ها نیز مورد این مطلب است، زیرا که در هاله دگرگونی ایجاد شده در اطراف توده‌های نفوذی دیسپید، که حاصل تشكل پیش از ۱۰۰ یا ۳۰۰ درجه سانتی‌گراد و وجود دارند (تجریه سه تا شش هزار سنجو دستگاه اسبانیکی به روش میکروپیتر)، با توجه به اینکه توده‌های پلیتوئیک می‌توانند حداقل ۱۰ تا ۲۰ درصد حارمهای خود را به نشانه‌های سنجشی‌های مجاور منتقل کنند از این رو، حارمهای در حدود ۸۶۰ یا حتی بیشتر برای توده‌های مانند های نفوذی تخمین‌زده می‌شود. در بررسی‌های پتروپژیتیک نوع بافت سنگ‌ها نیز می‌توان به عنوان کلیه برای شناخت منشا متأخر باشند.

در سنگ‌های منطقه مورد مطالعه بافت‌های پرپنی، آنتی‌پرپنی و گرافیت (گرافنیور) به فراوانی مشاهده می‌شود. وجود بافت‌های پرپنی و آنتی‌پرپنی نشانه که تولید سنگ تحت فشار باید کمتر از ۱۰۴ کیلوبار در سیستم دوتایی آلیس و آنتی‌پرپنی نشانه علت است به چین سنگ‌های های نفوذی، گرافین هیپرسالوس و ساختارهای می‌شود. بنفیت‌های گرافنیوری موجود حاصل رشد همزمان کوارتز و قلیل‌سایر سنگ‌های ما می‌توان به ترتیب مشابه نقشه‌ای که تکیه یا خط کوتیکی را دارد می‌باشند. میان‌مستو سالومون که ۲۲ کانی‌های سه‌لیکات از این سنگ‌ها را به عنوان پلیت‌های بی‌پنکه مشخص نموده و وجود آنها را به عنوان نشانه‌های ک خاتم سنگ‌های پوسته ای می‌داند پیچر دایم [۲۶] وجود آلومینوسیلیک‌ها از جمله سه‌لیکات در گرافنیوریها را به عنوان رستی قلیاد می‌کند. شلی [۲۶] نیز عقیده دارد در سنگ‌های گرافنیوری نوع S مواد رسینیتی به وفور بافت می‌شود. اندیمانی و کورداریت در گرافنیوریت شیرکوه از نوع اولیه استند چون هر دو بر خلاف نوع دگرگونی‌های ادخال‌های کربنی بوده و
پترولئوی و زننیمی نوده‌های نفوذی جنوب غرب یزد

بعضی از شفاف دیده‌ها نشان می‌دهد نتیجه گرفته که این کانال‌ها بصورت اولیه از یک ماده ماسکالی پرآمونی می‌شودند. در نتیجه کریستال‌هایی فاقد اثر از یک ماده غیر اینی را گزارش کرده‌اند [14].

شکل 1: موقعیت سنگهای نفوذی جنوب غرب یزد و ارتباط آنها با ناحیه حرارت ذوب پایین‌سیستم سخت‌نیم.

NaAlSi₃O₈-KAlSi₃O₈-SiO₂

موضع‌های کد های آنها، نمونه‌های آذریان

- موضع تکتونیکی:

با استفاده از نمودارهای تشخیص محیط‌های تکتونیکی که توسط مانیار و بیکولی [21] ارائه شده است به طور کلی گرانیت‌های پوستی در سه گروه ۱، ۲، و ۳ قرار می‌گیرند. در نتیجه، با استفاده از نمودارهای درصد وزنی FeO/(FeO+MgO)، Al₂O₃/SiO₂، K₂O/SiO₂ در مقابل SiO₂ (شکل ۱) تعدادی از سنگهای گرانیت‌های منطقه را در محدوده POG دانست. نمودار درصد وزنی FeO+MgO/CaO نیز نشان می‌دهد که گرانیت‌های شیرکوه، کافی آباد و آذریان در نمونه‌های POG، FeO+MgO/CaO و Op، K₂O/SiO₂ معرف (PGO) در نمونه‌های آذریان و پوستی که از کوه‌هایی (مغناطیس) تکثیر شده است [۲۲]. نمودار یا برای نمونه‌های کافی آباد و پوستی این نمودار درصد وزنی FeO+MgO/CaO، FeO/MgO و FeO+MgO/CaO که از نوع گرانیت‌های مورد نظر را از نوع همزمان با کوه‌هایی و بعد از کوه‌هایی معرفی می‌نماید (شکل ۲). علاوه برای ریک تروفیتش محیط تکتونیکی گرانیت‌ها از عناصر کمیاب [۱۷] نیز می‌توان استفاده کرد.

MORB, عنصر کمیاب سنگهای ماسکالی جنوب غرب یزد با نمودارهای عمومی مربوط به منطقه، ORG [۲۴] و مناطق فرورانش (حاصره فعال قاره) مقایسه شده است. این نمودارهای دارای نقاط ماکزیمم و
پتروپذیری و زنوشیمی نویدهای نفوذی جنوب غرب پدیده‌ای و دهه‌های زیرا می‌نماید که اختلاف بین آنها زیاد است و محیط‌هاي در ارتباط با فرویانش را نشان میدهدند. زیرا گه رسول و مایعات می‌باشه با آنها می‌توانند باعث غنی‌شگی غنی عادی عناصر کمیاب شوند. این نمودارها غنی و تهی‌شگی از Ti و Sr نه شگی غنی و تهی‌شگی از Rb, K, Ba این نمودارها عرضه شده است. علاوه بر هضم رسوبات مرتبط با صفحه فرویانش در مناطق فرویانش که می‌توانند باعث غنی‌شگی غنی عادی عناصر کمیاب شوند پدیده‌ای غنی همیشه با اختلاف نیز شاد در مکانیسم‌های غنی‌شگی و تهی‌شگی موثر بوده‌ند.
شکل 11: نمودارهای مختلف مانیل و پیکولی (1989) برای تشخیص محیط تکتونیکی گراتنی‌پذیرهای بر اساس این نمودارها گراتنی‌پذیرهای جنوب غربی از نوع گراتنی‌پذیرهای پس از کوه‌هایی می‌باشد.
شکل ۱۲: نمودار بیانیه و بعد از کوه‌های ماکان با همزمانی رسمی. سطح‌های فاصله‌گذاری و محدودیت‌های محققین برای استفاده از داده‌های کشفیاتی را نشان می‌دهد.
6- نتیجه‌گیری:

از مطالعات صحرایی، آزمایشگاهی، پتروگرافی، زئوشیمیایی، پتولوژی و زمین‌ساختی منطقه جنوب غربی به این نتایج رسیده‌ایم:

1- قدمتی تكوین سنگ‌های منطقه که در مجاورت با ناحیه شیرکوه قرار دارد از هزاران کیلومتر از دسترس دارد و این نگاهی از زمان حرکت و ورود کمی به آن است. در این منطقه سنگ‌های سنگ‌پیمانی به حالت سخت است. مراحل تکثیر سنگ‌های جنوبی از ناحیه شیرکوه بطور کلی می‌باشد.

2- توده‌های نفوذی سخت ارتفاعی در شمال غربی سنگ‌پیمانی گرانیت‌های و گرینویتیت سیب‌رنگیتیک، آلپان و تونالیت‌های پیشین می‌باشد. سنگ‌های فرسی سنگ‌های منبتین، مشاهده‌های زیاد و برشات به همراه دارد.

3- توده‌های گرانیت‌هایی منطقه بیشتر ماهیت کالکالکانی دارد.

4- با توجه به کارهای آزمایشگاهی و آналیز‌های شیمیایی، توده‌های گرانیت‌هایی در طبقه حرارتی اول در ا האדם و دارای فشار بین 200-40 کیلو پاسکال است.

5- با توجه به داده‌های زئوشیمیایی و پتولوژی در مقادیر سنگ‌های آلپان و کالکالکان و شرایط هیدرولوژیکی می‌توان چنین نتیجه‌گیری کرد که در منطقه اصلی مطالعه بیش از یک اعضا نفوذ و گریزی گرانیت‌ها را رخ داده است. به‌عنوان مثال، سنگ‌های شیرکوه و سنگ‌های شیرکوه با زمان از تریاس بالایی به احتمال زیاد در زوراسیک میانی جایگزین شده است. سن مطلق این شده بعد از تریاس بالایی به احتمال زیاد به احتمال زیاد زوراسیک میانی گریزی گرانیت‌هایی شده است. در حالی که توده‌های نفوذی کافی اباد و ادرن‌لندان بدلیل دگرگونی آهن‌هایی کرناسه‌های اطراف با کرنسه‌های جایگزینی شده و ممکن است در ارتباط با فاز‌های کوه‌زایی جوانتر باشد.

6- دمای یک‌واخت شدایی نسبتی با پایین کوانتیز در سنگ‌های منطقه می‌تواند حاکی از علمکداری فاز دوپتیک باشد.

قرارگیری میکا و آمپتیو این موضوع را تایید می‌کند.

7- با توجه به تعداد دارایی تشخیص محیط کلاسیکی گرانیت‌ها و محصولات شیمیایی و کاتانشناسی گرانیتوندهای شیرکوه، کافی اباد و ادرن‌لندان می‌توان اما را گروه گرانیت‌های کوه‌زایی برخورد قرار دادن.

8- از نظر نتایج اقتصادی باتولیت شیرکوه و توده‌های نظامی کافی اباد و ادرن‌لندان استفاده فوق العاده‌ای جهت استفاده سنگ‌های ترکیبی داشته و بخش هزاردی آن برای استفاده فلسپالو و سپس مناسب است. پیمان‌ها در ارتباط با توده‌های نفوذی خیلی کم بوده و فاقد ارزش اقتصادی هستند. ارزش اقتصادی منابع اسکارنی باستینی
پترولژی و زنوشیمی توده‌های نفوذی جنوب غرب یزد

مورد مطالعه بیشتری فرار گیرد. ضمناً کانی سازی آهی-مس-سررب-روی و کانی‌های غیر فلزی توزیع، توزیع کانولوشنی نیز مشاهده می‌شود. بر مبنای داده‌های زنوشیمی‌ای و پایین گونه که توده‌های نفوذی گرانتوندی جنوب غرب یزد حداکثر از نظر علی و ننگنسن، نتیجه‌گیری‌های برای بررسی تونسی سایر عناصر، انجام مطالعات ایزوتوپی و تعیین دیفیک عناصر، انجام مطالعات ایزوتوپی و تعیین دیفیک عناصر کمیاب لازم و ضروری است.

پایه

1- Spider diagram 9- Hine et al
2- Rollinson 10- Maniar & Piccoli
3- Reyre, D.& Mohafez 11- Sylvester
4- Forster 12- Miyashiro
5- Debon & Lefort 13- Lameyre & Boden
6- Shelly 14- Irvine & Baragar
7- Barker 15- Auboin et al
8- Chappell & White
منابع

1. حسن نازد، علي اکبر (۱۳۷۴)، حاتم در مورد پتروگرافی و زئوسیمی با تولیت شیرکوه، دانشگاه علوم پایه دامغان.
2. حسن‌نیا، علی، وزیری مقدم، حسن (۱۳۷۱)، خلاص‌های از چینش‌نامه و جغرافیای دیرینه دوره‌های در نواحی شیرکوه یزد، دانشگاه تهران. (مجموعه مقالات بررسی مساله منطقه کویری و بیابانی ایران)
3. درویشزاده، علی (۱۳۷۰)، ژئوشناسی ایران، چاپ اول، انتشارات نشر امروز.
4. زارعی سهامیه، رضا (۱۳۷۸)، مطالعه ماهگماتیسم جنوب غرب یزد (منطقه انت. عدا). موضوع رساله دکتری دانشگاه تربیت معلم.
5. کلانتری سرجشه، محمد صادق (۱۳۷۵)، پتروگرافی و زئوسیمی با تولیت گرانیت‌یوندی شیرکوه یزد، پایان نامه کارشناسی ارشد دانشگاه تربیت معلم.
6. معین وزیری حسین. دیبا، جایا بر ماهگماتیسم در ایران(۱۳۷۵)، انتشارات دانشگاه تربیت معلم.
7. ولی زاده، محمد ولی (۱۳۷۱)، پتروگرافی تجریبی و تکنیک کلی، جلد دوم، انتشارات و گرایش‌ها، انتشارات دانشگاه تهران.

25. Pitcher, W. S., 1993, the nature and origin of granites, Blackie Academic & professional.