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Abstract

For finding an optimal solution in L.P,, combination of orthogonality and simplex

method is used. [t seems that the number of iteration is reduced with respeet to new

algorithm in [1].
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1. INTRODUCTION.

The simplex method for solving L.P. was
developed by G.B. Dantzig., This is an it-
erative method which comes to the solution
or shows that problem has no feasible solu-
tion. Here we consider linear programming

in canonical form (for example in R?):

Mazimize 2 = eI + cxy, (1)
8.5 AX < B,
X &S0,
X = (z1,%2)

For simplicity it has been assumed that
e (e1,e2) = 0. The vector lﬁ(l £ R)
is perpendicular to the hyperplane ¢z +
cyry = zp. Suppose that the vector A inter-
sects the feasible region boundary at points
I, and F; (Figure 1),

If we start from peoint F3, at most two
iterations, are needed for finding the opti-
mal solution. This is the main idea which
will be used in this paper, i.e., finding an op-
timal solution with combination of orthego-
nality and simplex method. The theory will
be discussed in section 2. In section 3 some
examples will be presented.

2. ALGORITHM.

Consider

Magimize =z

cyly F EeTa T oo o Oy
Subject to
BTy + Gigta+ 0+ Gindn < by,

. m

It has been assumed that b; > 0 for all i.

After adding slacks and surpluses we have

(3)

Marimize z

€17y + 2%z + o+ €y,

Suhje(:ﬂ to

an®y + ey 4 o0+ GinTa + Tags = b,
ST e
;T + BaTe + o0+ Qinln — Tnpd = E'rt':
t=pt+l,..., P2
ATt 4+ QipTa 000+ BTy ot t"i?

t=pp+1,...0,m
5203 5=1,...,n+ps.

There are two cases.

Case 1:
pa = m; that means there are no equality

constraints, we define:
P={jleg=>0}

No= d Elee®i

o = i €t

=1

Q

- T
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Figure 1. Combination of orthogonality and simplex method.

fF= N* ...,ﬂmt;—bm}!,
T=min {t, >0]|ieQn{1,2,...,;p}) 2i=gtl  al=ely , j=1,....m
p=max {>0]i€Qn{p +1,.. -ym}} In this case Lol gel = 2 GEl | so X1
If P £ N, which gives better value for objective func-

tion, and we select it as initial feasible so-

fl=min {¢ [2€Qn{1,2,... ; )
: ] @Nt i) lution. If ¢5 > ¢} | it can not be deduced

tz=max {t; [t e @n{p +1,...,m}} : ) ) )
% i S H that the constraints are inconsistent. In this

Here, a; is inner product of objective func- case a solution is obtained, X2, which is not

tion and " constraint. It can be proved feasible. See Figure 2.

ti = ||6)l2/]|%]2, where ¥ = A, intersects

th

However after doing orthogonality oper-
" constraint and @ = M\ is projection of

ation a feasible or infeasible solution which

ah : & . T ; i
normal of ¢ constraint on C. may be basic or non-basic is obtained, it is
tried to get a BFS (Basic Feasible Solution)

from this solution (if problem is unbounded

It =1 =0, two feasible solutions are
obtained as follows.

feasible).
X’:(zi?.,,,zi,hl—cht;‘,.,., orasibly)

b, —o. t*a tr—h
™ Pl Mpp+llg pr+1s
Case 2:

. 3al?ii; = ’bm:lt'r

P2 < m ; that means there are some equal-

ity constraints. Notice that each equality
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Objective Function

Optimal Solution

Figure 2. When t3 > t1.

Case 1. A method for extracting a basic and
feasible solution will be discussed as follows.
Basic Operation:

Consider (3) as follows;

Mazimize z = CX, (4)
§.t. AX =65,
X >0

where X contains all original, slack, surplus
variables. Let X' be a solution vector ob-

tained in orthogonality operation, i.e.,
AXY = b,

Suppose

Ij ?é ] J = {jt1"-1jT}.‘

= Otherwise,

then {A; ,...,A; } is a set of column vec-
tors of A, which are used by X', if this set is

linearly independent, so X' is basic solution

and feazihili

zero, such that

hA; +0,A; ++-+ 8.4 =0 (a)
as X' is a solution of (4), so

zt A+ oL A, et z:A; =b (B)
from (a) and (b),

(x5, +¥%)4,,+ (5]

1

(@}

+ofs) Ay, et
(2}, +0.)4,, = b,

for all v € R. Hence if

( m;:ﬂ—'yﬂ: I =t s r
HOE !
l 1] CHherwise

then X*(¥) = (z7),. .., &)

Tt (1)) 15 8 S0

lution of (4) for all ¥ € R. By appropriate

choice of +, one of the columns of A which
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possibility for X'(7) te be feasible, for this

purpose, 7 is chosen such that

z, + 98 =0 Vil =12, .47
Suppose
v = maz {—z [0, : t such that (6)
#, = 0}
- —oo  if0, <0V

vy = man {—&} [0 : 1 such that
#, < 0}

= 400 if {z2 0V L

Now if 41 < 72 , then for all value of «

satisfving 11 < v < 72, X'(7) is a [easible

0. £ 0 at

least one of the value of 4, or v must be fi-

solution of (4). Since (f;,0s,...

nite. Suppose 7 is v or 72 which is finite,
it is clear that in this case X'(7) is a feasi-
ble solution, in which at most (r-1) value are
“different from zero. Now by repeating this
procedure X' can be made basic solution. If
in one of the iteration 9; < 7z, then X' is
made a basic [easible solution. When both
~, and 4, are finite, one of those should be
chosen, which one is better? This choice 1s
illustrated in two step:

AY If 5y £ 7, then for all v ;, 1 <
v < 72, X'(7) is feasible, when the objec-
tive function is linear, one of the values ¥
or 7, which give better value for objective
function is chosen:

Maximization case,

Minimization case,

(3 if CX'(m)<CX'(m)
|
| 92 if CX'(m)>CX'(m)
B)lfy, >v thenforally, m 27 2
y2, X'(7) is infeasible solution, in this case
the method for choosing = is opposite what
is done in step (a).

Maximization case,

[ 5 if CXY 1)< CX'Y (1)
-]
| 72 if €X'(n)>CX'(n)

Minimization case,

{1 if CX'(n)2CX'(n)
-
| %2 if €X'(m)<CX'(n)
Of course this choice of v depends to the na-
ture of problem. The experience shows that
the above mentioned method is rather suc-
cessful.

On the whole after using orthogonal op-

eration exactly in two iteration of Gaussian
elimination a basic solution, which is denoted

by X! here after, is obtained.

Feasibility Operation:

In the end of basic operation instead of
BFS, a BS may by obtained, i.e., some of
the components of X! may be negative. In
this case by operation similar to dual simplex

method a feasible solution is obtained.

r - Tyl - YA L
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Subject to
e+ 2 <10
T+ 2z, < 10
dgy— s 2]
—2x) + 41, = 1

Bzl =12

2)
Mazimize x, + 5y + 3z3
Subject to
Ty + 2z 4 x2< 3
21y — I =
el e=1,23
3)

Mazimize 32y 4 520+ 13 + 24

Subjeet to

M+ 2rs+ a4 x4 <40

GEy + Iy =12
T3+ oxy <50
Tz+ T4 29

2, >0, i=1,9234
1]

Mazimize 6z) + Txg + 3za + 5z + 25 + 76

Subject to

Iyt T4 a2yt 2+ 3+ 25 <50

Ty + 1y < 10
Ty =8

Dia + Ty < 12

rs + Szg < 50

Is+zg 293

Mazimize 5y + 3x3 + 83 — Sy

Subject to

$1+2I2+ Ty + Iy 385

5.1.‘1 + xa E'-: 20
ST — I3 =
a4 zy, =20
% 20y 1=1;2,3:4.
6)
Mazimize —z;4 21,
Subjeet to @ + 22, <12
Iy — Ia 2 2
Iy ‘:: 0 E] g = l1 2.
7)
Minimize 2r; 4 =z,
Subject to 3z + T2 =3
Ty 422, <3
4$[ + 31.’2 E 6
i L I Y B
8)
Minimize 2r, + 3z, — 515

Subject to 1+ 22+ T3=1T
EI_]_ =, 51:'3 4 I3 E 10

5 >0, i=123

9)
Minimize 5z — 6z, — Tza
Subject to T+ 5Ty — 3z3 > 15
533] = ﬁl‘g -} 1{]$5 5: 12

1+ z24+ 13 =5
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Table 1
Orthogonal and Others ]
Simplex
Problem | Iterations [terations -| Big M Decompesition LINDO

No. of Dual 5. of Simplex Method

1 0 0 3 - 3

2 1 0 3 - 2

3 L ] 4 4 3

4 1 0 6 4 5

§ 0 1 4 4 3

fi 0 0 2 - 2

7 0 1 2 3

8 0 0 4 2

9 0 ] 4 4

Here we solve each problem by a special

method related to the problem. Fach prob-
lem is solved by LINDO software (Table 1).
Note 1:In table 1 each problem in orthog-
onal and simplex method uses one Gaussian
elimination iterative for Basic Operation.
Note 2:In the third columm of table L

each number is 0 or 1, and this

is very important.

4. CONCLUSIONS.

In all examples our method works well
than others. In examples 16,8 and 9 without
any other iterations, after finding a BFS, the
optimal solution is obtained. In other exam-
ples after one iteration, the optimal solution

15 obtained.

Number of iterations in several methods
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Ahbstract

Recent papers, [1],{2] & [3], describe some algorithms for linear first kind integral equa-
tions. These algorithms are based on angmented Galerkin method and Cross-validation
scheme [5]. The results show that, these algorithms work well for linear equations.

In this paper we apply algorithms of [1] & [2] on non-linear first kind integral equations
of Hammerstein type with bounded solution. In order to obtain a posteriori error estimate,
we apply fifteen-point Gauss-Kronrod quadrature rule [4]. Finally, we give a number of

numerical examples showing that the algorithms work well in practice.
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