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Abstract

A multitype branching random walk on the real line R is considered. The positions of n-
th generation individuals form a point process with related intensity measure. The purpose
of this paper is to study the asymptotic behavior of these intensity measures. The central

and local limit theorems are proved.

Introduction

A discrete time multitype (p-type) branching random walk on the real line R is
considered. The process starts with a single i-type ancestor located at the origin. This
particle splits into a random number of new particles of different types, with probability
law depending on i, to make the first generation individuals. Then the particles choose
some place in R, to inhabit, according to probability laws which depend on the type and
position of their parent particle. Each of these particles behave in the same way,
independent from each other and the history of the process. For each fixedi=1, ..., p,

let Z' =(Z;,....Z;) be the vector of point processes that give the positions of different

types of individuals in generation n descended from an i-type one in generation zero and
located at the origin. So for each fixed i, j =1, ..., p, Z

; 18 the point process of the

positions of j-type individuals in generation n. The multitype branching random walk
{Z'} is considered quite frequently, see [3], [4],and [5]. Let,u;*, be the intensity

measure of the point processZ;in the sense that, for all Borel measurable sets

ACQ{,Mjn*zE[Z;(A)],(see Notations). Establishing a local limit theorem for the point

processes in branching random walk, when the generation size tends to infinity, is

considered frequently see, for a single type, [1] and [2]. In the multitype case, [4] has a
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similar result when the space of residence is a lattice. One of the techniques that is
common to all of these papers is the use of similar results for related intensity measures.
In setting a local limit theorem for the multitype branching random walk {Z;(.)} in
non-lattice space of residence, that we have in mind , it seems necessary to set a local
limit theorem for the intensity measures, that is our Theorem 2.2.

The discussion that we follow in this paper is based on the convolution of matrices
of intensity measures that are almost surely finite. Since our method is closely related to
the convolution of distribution functions in Markov additive process in [6], we will give
the definition and some normalizing, such as tilting and centering of measures in
Section 3, to be able to apply the results of [6]. The proofs of the main results are also
given in Section 3. Sectionl is the introduction and in Section 2 we give the notations

and some preliminary results, which is followed by setting the main results.

Notations and some preliminary results
We consider a multitype branching random walk {Z}={(Z},....Z; )} on the real

line R with a single i-type ancestor located at the origin. For each fixed i,j =1, ..., p,
let the point process{Z/ (r); r = 1,2,..} give the positions of the j-type individuals in

n
i

generation n. With a slight abuse of notation, let also Z ; (.) be the counting measure
associated with this point process in the sense that, for any Borel measurable
setAC R, Z;(A)=#{r:Z;(r)e A}, which is almost surely finite. The point process

Z; has the intensity measure g , defined inductively: if 4" ={u;},  then

P
(n+)* __ n# [\ . . R L
i = E Uy @ py; where"®" is ordinary convolution of measures and g (-) := #; ()
k=1

is the intensity measure of Z; Define the Laplace transforms m,;(4) with complex

arguments A by:

my (A) = _[Re‘”‘”,u,.j(dx), Ae C.
LetL=n, int{A=60+ine C :m;(@)<e}. Then L is an open convex subset of C
and L,=LN® is an open interval (see[3]). Define M (A)={m;(A)},, and let

M"(A)={m;(A)},,, beitsn-th power. Then

wich=Je o= 5]
R,

r

pxp
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The matrix A is called positive regular if all the entries are non-negative and for some

n, all the entries of A" are positive numbers (see[5]). The eigenvalue p(A) is called
maximum-modulus eigenvalue of M (A), if it is a simple eigenvalue of M (A)and for
any other eigenvalue p,(1)of M (A1), | p, (1) 1<l p(A)]. Assume:
A(l): The process {Z]} is positive regular in the sense that the matrix
M ={m;(0)} ={E[Z;(R)]}is positive regular.

The entries of the matrix M (A) are complex-valued analytic functions in A ; and for

those values of A =60 R, the matrix M (A) is positive regular. So, the conditions of

Theorem 1 in [3] hold and we single out this fact here in the next lemma.
Lemma 2.1. Let LcC be open and for all i, j, m;(A) be analytic in A€ L. Also let for

all 8e L, =LNR, M(8) be positive regular. Then there is an open set QC L
contatining L, such that for any Ae Q, M(A) has a simple maximum — modulus

eigenvalue p(A), with related left and right eigenvectors u(A) and v(A) with the

properties that:
(a) p(A),u(Ad) and v(A) are nonzero analytic functions in Ae 2 ; and for the real

argument , they become positive;
(b) u(A) and v(Ad) have nonzero components and are normalized so that

u D' v =1 and iui(/l) =1.
=1

Let 8 Q, =QNR . The multitype branching random walk is strongly nonlattice

when it is positive regular and, for some (k,I) and some fe 2,
m,, (0+in)
m,, (0)

=1

only whenever 7 =0. When the process is strongly nonlattice, then for all@e 2 ,
p(0) is strictly log-convex (see[3]). We set the next assumption:
A(2): The process {Z]'} is strongly non-lattice.

For any @€ 2, define A(8) =log p(€) then by A(2), A”(€) >0, and we denote it
by 6>=A"(@). For a=-p'(0)/ p(8) define A" (a) =-6p’(8)/ p(8)+log p(d). The
next assumption states that the process {Z;} is supercritical. This implies that, with a

positive probability, there are individuals alive in all generations. Assume:
A(3): For each 8e 2., N (—p’(8)/ p(8)) > 0.
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Let g be the density function of g, (dx), defined in (3.2) with related
characteristic functions ¢i;”). Our last two assumptions are:
A(4): 0e Q,.

A(5): For any Qe 2, the characteristic function ¢i;.”(x) of ,ZZ;I,)] is absolutely
integrable.

Now we set the main results, the first is a local limit theorem for tilted measure
Py ().
Theorem 2.2. Suppose A(1)-A(5) hold, 8€ 2 and a =—-p(6)/ p(0). Then for any fixed
i J,

_xz

limvng! (xv/n) - \/zl_ezoz —0
n o

uniformly in x€ ®_.

By estimating the integral of the normal density N(0,5>) over A we get
Theorem2.3. Let the hypothesis of Theorem 2.2 hold. Then for any bounded
measurable set A, and fixed i, j,

lim{~2n7 opy'; (na+ A)l =, (O)v,;(6) 1 Al
where, |Al is the Lebesgue measure of A.
We conclude this section with a centeral limit theorem for the intensity measures

{ ,ug*} by applying the Riemman integral estimate in Theorem 2.3. It is the Theorem 8§

in [3] with a new proof based on our local limit Theorem 2.2.
Theorem2.4. Suppose A(1)-A(S5) hold, 8€ 2., b>0 and a =—-p(6)/ p(8). Then for any
fixed i, j, and any bounded measureable set A,

lim[v2n7 o e_”A*(“),uZi.j (na+A)]=u;0)v,;(6) J‘Ae@‘dx

uniformly in 1Al <b, where, A" (a)=1log p(0)—60'(0)/ p(8) and |Al is the Lebesgue

measure of A.

The tilted versions of {4"} and the proof of the main results

In this section we introduce different tilted versions of the intensity measures
{4, }to find an equivalent version with the measures that are introduced in [6]. The

exact study of these intensity measures are via the kernels of operators. In fact all the

measures that are introduced in this section, are the kernels of operators on the set E={1,
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2, ..., p}X®R (see [1], [4], and [5]). For any @€ 2, andi,j =1, ..., p, define the tilted
measure i, by

v ,-(‘9) e ®
v,(6) p(6)
Then the n-fold convolution of u, ={,;} is defined inductively:

Hg i (dx) = yom (dx).

(n+1)#

Hoy (= Zk:fﬁ Hou D) p1,, (X =)

@O T
v (DA
p(©)

(dx). 3.1

The mean drift of measure u, is a=-p’(0)/ p(@), (see[4]). Define the centered
measure [, by, ;(dx) =i, (a+dx). Then 'UH = {ﬁﬁij}’ is a centered stochastic

kernel on E with zero drift and invariant measure 7z(€). Its n-fold convolution is
Figyy(dx) = T, (na +dx) . Let A(1) hold and @€ 2, then P =(p;;) = {zg i R)f is a
positive regular stochastic matrix with stationary measure (see[4])

7(0)= (7, (0),....,7,(0)), 7, (0)=u, (0)v,(0), (k=1, .., p).

Since P is positive regular, so for large values of n, P" =(p;) has all positive
entries. Define [Z;"U) (dx) = ,[2;”; (dx)/ p; whenever p; >0, and let ﬁglz] (dx)=0 for
p; =0. Thus we have

My (dx) = p} Ly (dx). (3.2)
Then [Z;’ij (dx) is a probability measure and its characteristic function is
o) () = [ e 1) ().
By the next proposition we will show that all ¢,.;.”) are absolutely integrable and their

related density functions exist.

Proposition 3.1. Suppose A(1)-A(5) hold and 6 2, with a=-p’(8)/ p(6). Then for
any i,j and n, ¢i;.”) (17) is absolutely integrable and the density function g exist.

Proof. Define ¢(77) = max, ;| ¢’

i

()| for me R, then by A(5), ¢ is absolutely
integrable and o< @(n7) <1 for all 7#0 with lim, ., ¢(77)=0. Let i, j be fixed. For

each n, using the convolution of measures and then a change of variable x — x+ y give
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pytos o =

[e”
R
_ ‘Zk e D, () g (dx = )

= 2, pypei ey an)

IA

pitte (). (3.3)

p
Then induction and I¢i;.”(77)l < @(n7) imply I¢i;.”)(77)l < (p(n))" forall ne R and i, j.
Since ¢ is integrable and @" < ¢, we get the absolute integrability of all (pl;") and
hence the existence of their density functions g .

Now by comparing the result of [6], our measure £, =(/,;)is the same as the

measure v in [6] with i, in place of v . Thus the results of [6] hold and we can use it
to prove our results:

Proof of theorem 2.3. Let g be the density function of the measure f"). All the

conditions of Therorem 2.3 in [6] hold, with g; as the density function of the measure

7"/ pl;. Moreover it should be noted that, for any @€ £, we have a tilted measure I,

which is equivalent to v in [6]. This completes the proof.

Proof of Theorem 2.3. Let Ac[-b,b] be a bounded measurable set and i, j be fixed.

For any n we can write

Nom oty (na+ A)-1 A| <27

2
—X

1 -
G\/;'“('f? A)— | ———e217 dx
R e

=S
+N27m0 || | =€ — dx
J-A { N 27 Ni 27:0}

=A, +B, say. (3.4)
By applying the integral to the uniformly convergent sequences in Theorem 2.2

over the set A, we get

7x2

1 Py
limni, . (c+A)— | ——2"7 dx| =0,
e M L‘ NGY 2o

Uniformly in A < [-b,b]. This implies that as n -, A — 0. It is enough to show

that B, — 0 as n— co. By the properties of the normal distribution, for some constant
C>0andallx, |f, (x)-f, (O)| < Cx*. Thus we have
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b
|Bn| =4/ ZﬂGEJszdx < ijzdx = C—z,
n

n? n
where, C, and C, are constants which complete the proof of B, — 0, as n — oo. Since
,u;"; (na+A)/ p; = ~(§’3 (A) and u,(@)v,(6) is the stationary distribution of p, then by

applying the definition of ,u(")

lim|2mouy, (na+ A)|=u,@)v,(6)1 Al

in (3.4) we get

and completing the proof.

Proof of Theorem 2.4. Let A c[-b,b]=1 be a measurable set. For any fixed i, j, and

n, from the equation (3.1) we can write

. 0 o ,
Wi (na+A)= l:%p( )" }Laﬂe Mg ;; (dx).

By changing the variable x to x+na and recalling that a = —p’(8)/ p(8), we get

n# (0) nA'(a & 5 n*
M (”a"‘A)—W H{ Hg;; (dx)

where, A" (a) =log p(8)—8p'(0)/ p(0) . Define f(x)=1,(x)e* forall xe I. Let
{A, : r} be a finite partition of I, then for each r, define M, =sup{f(x):x€ A, } and
m, =inf{f(x):x€ A }. Foreach xe I, let f(x)=) M1, (x) and f(x)=) m,1, (x).
When xe A we have f(x) < f(x) < ?(x) so for this fixed partition {Ar . r},
a4y ST M (4, (35)
v,0°
Let M = ZrM . and £€>0 be fixed. Form Theorem 2.3, for any fixed r, there is an

N, such that, for all n > N, we have

V2mo @y, (A)~ii, Oy,

£
< R (3.6)

We choose N, large enough such that (3.6) holds for all r. Then applying (3.6) in (3.5)

€
4+
v

for large n > N, implies

N2m o (na+ A) < {:"((?)e”““)}ZM, {ujw)vj

”A(“)|:LI £(B)dx + ((9)) }

where L=u;(0)v,(0). Thus, for any € >0, we have
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L . (6
J,=2moe™ (“),u,.’; (na+A)SLI f(x)dx+M€.
A v,(0)
By taking limsup of both sides of the above inequality, as n—>o, we get

limsup J, < LL f(x)dx +(v,(8)/v,;(8))e. Since € is arbitrary, we will have [jm sup

n—oo N300

<L I f (x)dx . This inequality holds for all partitions of I, thus by taking infimum on all
A
partitions of I and taking into account that J, is independent of these partitions, we get

limsup J, <L| flx)dx. (3.7)

With a similar argument we can prove that liminf J, ZLI f(x)dx, which in
n—oo A

conjunction with (3.7) complete the proof .
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